RESUMO
We characterized the dual wavelength operation of a distributed Bragg reflector (DBR) quantum cascade laser (QCL) operating at 4.5 µm using two independent optical frequency discriminators. The QCL emits up to 150 mW fairly evenly distributed between two adjacent Fabry-Perot modes separated by ≈11.6 GHz. We show a strong correlation between the instantaneous optical frequencies of the two lasing modes, characterized by a Pearson correlation coefficient of 0.96. As a result, we stabilized one laser mode of the QCL to a N2O transition using a side-of-fringe locking technique, reducing its linewidth by a factor 6.2, from 406 kHz in free-running operation down to 65 kHz (at 1-ms observation time), and observed a simultaneous reduction of the frequency fluctuations of the second mode by a similar amount, resulting in a linewidth narrowing by a factor 5.4, from 380 kHz to 70 kHz. This proof-of-principle demonstration was performed with a standard DBR QCL that was not deliberately designed for dual-mode operation. These promising results open the door to the fabrication of more flexible dual-mode QCLs with the use of specifically designed gratings in the future.
RESUMO
We demonstrate dispersion compensation in mid-infrared quantum cascade laser frequency combs (FCs) emitting at 7.8 µm using the coupling of a dielectric waveguide to a plasmonic resonance in the top cladding layer of the latter. Devices with group velocity dispersion lower than 110 fs2/mm were fabricated, and narrow beatnotes with FWHM linewidths below 1 kHz were measured on the entire operation range. At -20°C, the optical output power reaches 275 mW, and the optical spectrum spans 60 cm-1. The multi-heterodyne beating spectrum of two devices was measured and spans 46 cm-1, demonstrating the potential of dispersion-engineered waveguides for the fabrication of highly stable and reliable quantum cascade laser FCs with high output power across the mid-infrared.
RESUMO
We report gain-guided broad area quantum cascade lasers at 4.55 µm. The devices were processed in a buried heterostructure configuration with a current injector section much narrower than the active region. They demonstrate 23.5 W peak power at a temperature of 20°C and duty cycle of 1%, while their far field consists of a single symmetric lobe centered on the optical axis. These experimental results are supported well by 2D numerical simulations of electric currents and optical fields in a device cross-section.
RESUMO
We present a single mode quantum cascade laser with nearly 1 W optical power. A buried distributed feedback reflector is used on the back section for wavelength selection. The laser is 6 mm long, 3.5 µm wide, mounted episide-up and the laser facets are left uncoated. Laser emission is centered at 4.68 µm. Single-mode operation with a side mode suppression ratio of more than 30 dB is obtained in whole range of operation. Farfield measurements prove a symmetric, single transverse-mode emission in TM00-mode with typical divergences of 41° and 33° in the vertical and horizontal direction respectively. This work shows the potential for simple fabrication of high power lasers compatible with standard DFB processing.
RESUMO
We report here on a quartz-enhanced photoacoustic (QEPAS) sensor employing a quantum cascade laser (QCL) structure capable of operating in a pure amplitude or wavelength modulation configuration. The QCL structure is composed of three electrically independent sections: Gain, Phase (PS) and Master Oscillator (MO). Selective current pumping of these three sections allows obtaining laser wavelength tuning without changes in the optical power, and power modulation without emission wavelength shifts. A pure QEPAS amplitude modulation condition is obtained by modulating the PS current, while pure wavelength modulation is achieved by modulating simultaneously the MO and PS QCL sections and slowly scanning the DC current level injected in the PS section.
RESUMO
We present a single mode multi-section quantum cascade laser source composed of three different sections: master oscillator, gain and phase section. Non-uniform pumping of the QCL's gain reveals that the various laser sections are strongly coupled. Simulations of the electronic and optical properties of the laser (based on the density matrix and scattering matrix formalisms, respectively) were performed and a good agreement with measurements is obtained. In particular, a pure modulation of the laser output power can be achieved. This capability of the device is applied in tunable-laser spectroscopy of N2O where background-free quartz enhanced photo acoustic spectral scans with nearly perfect Voigt line shapes for the selected absorption line are obtained.
RESUMO
In this work, we present the development of low consumption quantum cascade lasers across the mid-IR range. In particular, short cavity single-mode lasers with optimised facet reflectivities have been fabricated from 4.5 to 9.2 µm. Threshold dissipated powers as low as 0.5 W were obtained in continuous wave operation at room temperature. In addition, the beneficial impact of reducing chip length on laser mounting yield is discussed. High power single-mode lasers from the same processed wafers are also presented.
RESUMO
We present single mode quantum cascade lasers including a microscopic heater for spectral emission tuning. Through the use of a buried heater element, the active region temperature can be modified without changing the submount one. Emission frequency tuning in continuous-wave as large as 9 cm(-1) at 1270 cm(-1) and 14 cm(-1) at 2040 cm(-1) are observed, corresponding to an increase of the active region temperatures of â¼ 90 K. Due to the proximity of the heaters to the active region, emission can be modulated at several kHz range and the absence of moving parts guarantees the mechanical stability of the system. This method can be successfully applied to all buried heterostructure lasers, becoming an attractive solution for molecular spectroscopy in the IR. Using the presented devices, molecular absorptions of N(2)O have been measured between 1270 cm(-1) and 1280 cm(-1) and are in agreement with data from the HITRAN database.
RESUMO
In this work, we present GaInAs/AlAs/AlInAs quantum cascade lasers emitting from 3.2 to 3.4 µm. Single-mode emission is obtained using buried distributed-feedback gratings fabricated using standard deep-UV contact lithography. This technique can easily be transferred to industrial production. Devices with single-mode emission down to 3.19 µm were achieved with peak power of up to 250 mW at -20 °C. A tuning range of 11 cm(-1) was obtained by changing the device temperature between -30 °C and 20 °C.
RESUMO
A novel all-electrical method of frequency noise reduction in quantum cascade lasers (QCLs) is proposed. Electrical current through the laser was continuously adjusted to compensate for fluctuations of the laser internal resistance, which led to an active stabilization of the optical emission frequency. A reduction of the linewidth from 1.7 MHz in the standard constant current mode of operation down to 480 kHz is demonstrated at 10-ms observation time when applying this method to a QCL emitting at 7.9 µm.
RESUMO
A mid-IR optical analyzer based on a 3 µm Fabry-Perot quantum cascade laser has been developed for ultrafast detection of aerosol propellants, such as propane and butane. Given the laser emission bandwidth of 35 cm(-1), the system is spectrally well-matched to the C-H vibrational band of hydrocarbons, it is insusceptible to water interference, and stable enough to operate without wavelength scanning. Thus, it offers both high sensitivity and speed, reaching 1 ppm precision within a measurement time of 10 ms. The performance of the instrument is evaluated with an industrial demonstrator for aerosol cans leak testing, confirming that, in compliance with international directives, it can detect leaks of 1.2×10(-4) slpm at a rate of 500 cans per minute.