Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062917

RESUMO

Determining the genetic contribution of susceptibility to severe SARS-CoV-2 infection outcomes is important for public health measures and individualized treatment. Through intense research on this topic, several hundred genes have been implicated as possibly contributing to the severe infection phenotype(s); however, the findings are complex and appear to be population-dependent. We aimed to determine the contribution of human rare genetic variants associated with a severe outcome of SARS-CoV-2 infections and their burden in the Slovenian population. A panel of 517 genes associated with severe SARS-CoV-2 infection were obtained by combining an extensive review of the literature, target genes identified by the COVID-19 Host Genetic Initiative, and the curated Research COVID-19 associated genes from PanelApp, England Genomics. Whole genome sequencing was performed using PCR-free WGS on DNA from 60 patients hospitalized due to severe COVID-19 disease, and the identified rare genomic variants were analyzed and classified according to the ACMG criteria. Background prevalence in the general Slovenian population was determined by comparison with sequencing data from 8025 individuals included in the Slovenian genomic database (SGDB). Results show that several rare pathogenic/likely pathogenic genomic variants in genes CFTR, MASP2, MEFV, TNFRSF13B, and RNASEL likely contribute to the severe infection outcomes in our patient cohort. These results represent an insight into the Slovenian genomic diversity associated with a severe COVID-19 outcome.


Assuntos
COVID-19 , Predisposição Genética para Doença , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/epidemiologia , COVID-19/virologia , Eslovênia/epidemiologia , SARS-CoV-2/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Sequenciamento Completo do Genoma , Variação Genética , Adulto , Genômica/métodos , Pandemias , Infecções por Coronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Betacoronavirus/genética
2.
ERJ Open Res ; 8(4)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36474964

RESUMO

Background: The relationship between anti-SARS-CoV-2 humoral immune response, pathogenic inflammation, lymphocytes and fatal COVID-19 is poorly understood. Methods: A longitudinal prospective cohort of hospitalised patients with COVID-19 (n=254) was followed up to 35 days after admission (median, 8 days). We measured early anti-SARS-CoV-2 S1 antibody IgG levels and dynamic (698 samples) of quantitative circulating T-, B- and natural killer lymphocyte subsets and serum interleukin-6 (IL-6) response. We used machine learning to identify patterns of the immune response and related these patterns to the primary outcome of 28-day mortality in analyses adjusted for clinical severity factors. Results: Overall, 45 (18%) patients died within 28 days after hospitalisation. We identified six clusters representing discrete anti-SARS-CoV-2 immunophenotypes. Clusters differed considerably in COVID-19 survival. Two clusters, the anti-S1-IgGlowestTlowestBlowestNKmodIL-6mod, and the anti-S1-IgGhighTlowBmodNKmodIL-6highest had a high risk of fatal COVID-19 (HR 3.36-21.69; 95% CI 1.51-163.61 and HR 8.39-10.79; 95% CI 1.20-82.67; p≤0.03, respectively). The anti-S1-IgGhighestTlowestBmodNKmodIL-6mod and anti-S1-IgGlowThighestBhighestNKhighestIL-6low cluster were associated with moderate risk of mortality. In contrast, two clusters the anti-S1-IgGhighThighBmodNKmodIL-6low and anti-S1-IgGhighestThighestBhighNKhighIL-6lowest clusters were characterised by a very low risk of mortality. Conclusions: By employing unsupervised machine learning we identified multiple anti-SARS-CoV-2 immune response clusters and observed major differences in COVID-19 mortality between these clusters. Two discrete immune pathways may lead to fatal COVID-19. One is driven by impaired or delayed antiviral humoral immunity, independently of hyper-inflammation, and the other may arise through excessive IL-6-mediated host inflammation response, independently of the protective humoral response. Those observations could be explored further for application in clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA