Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Chem Res Toxicol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953874

RESUMO

Implementation of the Tobacco Control Act in 2009 banned characterizing flavors in cigarettes (except menthol and tobacco), but substitution has occurred by the continued availability of alternative flavored products (i.e., flavored little cigars). Little is known about how flavorants in noncigarette tobacco products impact human health. Thus, we investigated the impact of flavorants on free radical production in the mainstream smoke of little cigars. Gas- and particulate-phase free radical yields in mainstream smoke generated from 12 commercial little cigar brands and research little cigars and cigarettes were measured via electron paramagnetic resonance spectroscopy using the International Organization of Standardization (ISO) smoking protocol. Flavorants were extracted from unsmoked little cigars and analyzed by gas chromatography-mass spectroscopy. Gas- and particulate-phase radical yields from little cigars ranged from 13.5 to 97.6 and 0.453-1.175 nmol/unit, respectively. Comparatively, research cigarettes yielded an average of 4.9 nmol gas-phase radicals/unit and 0.292 nmol particulate-phase radicals/unit. From the products, 66 flavorants were identified, with each brand containing 4-24 individual flavorants. The free radical content was strongly correlated with the number of flavorants present in each cigar (r = 0.74, p = 0.01), indicating that highly flavored little cigars may produce higher levels of toxic free radicals. The presence of the flavorant ethyl methylphenylglycidate (strawberry) was associated with >2-fold higher levels of GP radicals (p = 0.001). Our results show that free radical delivery from little cigars is greater than that from research cigarettes and provide empirical evidence for the harmfulness of flavored tobacco products. Additionally, it demonstrates that flavorants present in combustible tobacco products can influence the levels of free radicals produced. Therefore, future tobacco product standards should consider little cigars.

2.
Chem Res Toxicol ; 36(4): 653-659, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36930521

RESUMO

Tobacco nitrate levels have been known to impact the levels of toxicants such as polyaromatic hydrocarbons and tobacco-specific nitrosamines (TSNAs) produced during smoking. Recent work in our group showed that the intrinsic nitrate levels in individual tobacco varieties also have a large influence on the formation of gas-phase (GP) free radicals in the mainstream smoke of cigarettes produced with a single tobacco variety. As tobacco nitrate content is a potential target for future regulatory policies, we investigated whether the levels of GP free radicals in the smoke from commercially available cigarettes is also dependent on the nitrate content in the corresponding tobacco blends. GP and particulate-phase (PP) free radical yields in mainstream smoke produced from 25 popular US cigarette brands were measured by electron paramagnetic resonance (EPR) spectroscopy. For each brand, we also measured levels of the TSNAs NNN (N'-nitrosonornicotine) and NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone) via HPLC-MS and the nicotine content via GC-FID. Our results show that the intrinsic nitrate levels varied >15-fold and GP radicals varied 4-fold among the 25 brands tested. The GP radicals were correlated with intrinsic nitrate levels (r = 0.87, p < 0.001). NNK and NNN levels varied >8-fold and 12-fold, respectively. We found that NNK was moderately correlated to nitrate content (r = 0.42, p = 0.03) while the NNN was strongly correlated to the nitrate content (r = 0.65, p < 0.001). Nicotine levels varied the least (<3-fold) but showed a moderate negative correlation to nitrate content (r = -0.47, p = 0.02). No statistically significant correlation was observed between nicotine and TSNA levels in mainstream smoke. Overall, this demonstrates that the nitrate content of tobacco blends used in US cigarette brands impacts toxicant output in the mainstream smoke, although other proprietary variables (total ventilation, additives, filter type, etc.) may also modulate these results.


Assuntos
Nitrosaminas , Produtos do Tabaco , Nicotina , Fumaça/análise , Nitratos , Carcinógenos/análise , Nitrosaminas/análise , Radicais Livres
3.
Nicotine Tob Res ; 25(7): 1400-1405, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-36967618

RESUMO

INTRODUCTION: Cigarette smoke contains highly reactive free radicals thought to play an important role in tobacco smoke-induced harm. Previously, large variations in free radical and toxicant output have been observed in commercial cigarettes. These variations are likely because of cigarette design features (paper, filter, and additives), tobacco variety (burley, bright, oriental, etc.), and tobacco curing methods (air, sun, flue, and fire). Previous reports show that tobacco varieties and curing methods influence the production of tobacco smoke constituents like the tobacco-specific carcinogen nicotine-derived nitrosamine ketone (NNK). AIMS AND METHODS: We evaluated free radical, nicotine, and NNK production in cigarette smoke from cigarettes produced with 15 different types of tobacco. Gas-phase free radicals were captured by spin trapping with N-tert-butyl-α-phenylnitrone and particulate-phase radicals were captured on a Cambridge Filter pad (CFP). Both types of radicals were analyzed using electron paramagnetic resonance spectroscopy. Nicotine and NNK were extracted from the CFP and analyzed by gas chromatography flame ionization detection and liquid chromatography-mass spectrometry, respectively. RESULTS: Gas-phase radicals varied nearly 8-fold among tobacco types with Saint James Perique tobacco producing the highest levels (42 ±â€…7 nmol/g) and Canadian Virginia tobacco-producing the lowest levels (5 ±â€…2 nmol/g). Nicotine and NNK levels in smoke varied 14-fold and 192-fold, respectively, by type. Gas-phase free radicals were highly correlated with NNK levels (r = 0.92, p < .0001) and appeared to be most impacted by tobacco curing method. CONCLUSIONS: Altogether, these data suggest that tobacco types used in cigarette production may serve as a target for regulation to reduce harm from cigarette smoking. IMPLICATIONS: Variations in cigarette free radical and NNK levels vary based on the tobacco variety and curing method. Reducing the ratio of high-producing free radical and NNK tobacco types offer a potential tool for regulators and producers looking to reduce toxicant output from cigarettes.


Assuntos
Fumar Cigarros , Nitrosaminas , Produtos do Tabaco , Poluição por Fumaça de Tabaco , Humanos , Nicotiana/química , Nicotina/análise , Poluição por Fumaça de Tabaco/análise , Canadá , Cromatografia Gasosa-Espectrometria de Massas , Produtos do Tabaco/análise , Radicais Livres/análise , Nitrosaminas/análise
4.
Chem Res Toxicol ; 33(7): 1882-1887, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32432464

RESUMO

With conventional cigarettes, the burning cone reaches temperatures of >900 °C, resulting in the production of numerous toxicants and significant levels of highly reactive free radicals. In attempts to eliminate combustion while still delivering nicotine and flavorings, a newer alternative tobacco product has emerged known as "heat-not-burn" (HnB). These products heat tobacco to temperatures of 250-350 °C depending on the device allowing for the volatilization of nicotine and flavorants while potentially limiting the production of combustion-related toxicants. To better understand how the designs of these new products compare to conventional cigarettes and different styles of electronic cigarettes (e-cigs), we measured and partially characterized their production of free radicals. Smoke or aerosols were trapped by a spin trap phenyl-N-tert-butylnitrone (PBN) and analyzed for free radicals using electron paramagnetic resonance (EPR). Free radical polarity was assessed by passing the aerosol or smoke through either a polar or nonpolar trap prior to being spin trapped with PBN. Particulate-phase radicals were detected only for conventional cigarettes. Gas-phase free radicals were detected in smoke/aerosol from all products with levels for HnB (IQOS, Glo) (12 pmol/puff) being similar to e-cigs (Juul, SREC, box mod e-cig) and hybrid devices (Ploom) (5-40 pmol/puff) but 50-fold lower than conventional cigarettes (1R6F). Gas phase radicals differed in polarity with HnB products and conventional cigarettes producing more polar radicals compared to those produced from e-cigs. Free radical production should be considered in evaluating the toxicological profile of nicotine delivery products and identification of the radicals is of paramount importance.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Radicais Livres/análise , Produtos do Tabaco , Temperatura Alta
5.
Chem Res Toxicol ; 33(7): 1791-1797, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32363856

RESUMO

Free radicals and nicotine are components of cigarette smoke that are thought to contribute to the development of smoking-induced diseases. China has the largest number of smokers in the world, yet little is known about the yields of tobacco smoke constituents in different Chinese brands of cigarettes. In this study, gas-phase and particulate-phase free radicals as well as nicotine yields were quantified in mainstream cigarette smoke from five popular Chinese brands and two research cigarettes (3R4F and 1R6F). Mainstream smoke was generated under International Organization of Standardization (ISO) and Canadian Intense (CI) smoking regimens using a linear smoking machine. Levels of free radicals and nicotine were measured by electron paramagnetic resonance spectroscopy (EPR) and gas chromatography with flame-ionization detection, respectively. Under the ISO puffing regimen, Chinese brand cigarettes produced an average of 3.0 ± 1.2 nmol/cig gas-phase radicals, 118 ± 44.7 pmol/cig particulate-phase radicals, and 0.6 ± 0.2 mg/cig nicotine. Under the CI puffing regimen, Chinese brand cigarettes produced an average of 5.6 ± 1.2 nmol/cig gas-phase radicals, 282 ± 92.1 pmol/cig particulate-phase radicals, and 2.1 ± 0.4 mg/cig nicotine. Overall, both gas- and particulate-phase free radicals were substantially lower compared to the research cigarettes under both regimens, whereas no significant differences were observed for nicotine levels. When Chinese brands were compared, the highest free radical and nicotine yields were found in "LL" and "BS" brands, while lowest levels were found in "YY". These results suggested that the lower radical delivery by Chinese cigarettes compared to United States reference cigarettes may be associated with reductions in oxidant-related harm.


Assuntos
Radicais Livres/análise , Nicotiana , Nicotina/análise , Fumaça/análise , China , Produtos do Tabaco , Fumar Tabaco
6.
Chem Res Toxicol ; 32(1): 130-138, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30525517

RESUMO

E-cigarettes (e-cigs) are a diverse and continuously evolving group of products with four generations currently in the market. The National Institute on Drug Abuse (NIDA) standardized research e-cigarette (SREC) is intended to provide researchers with a consistent e-cig device with known characteristics. Thus, we conducted laboratory-based characterizations of oxidants and nicotine in aerosols produced from SREC and other closed-system, breath-activated, commercially available e-cigs (Blu and Vuse). We hypothesized that oxidant and nicotine production will be significantly affected in all devices by changes in puffing parameters. All e-cigs were machine vaped and the aerosols generated were examined for nicotine, carbonyls, and free-radicals while varying the puff-volumes and puff-durations to reflect typical human usage. The data were normalized on a per puff, per gram aerosol, and per milligram nicotine basis. We found that aerosol production generally increased with increasing puff-duration and puff-volume in all e-cigs tested. Increased puff-duration and puff-volume increased nicotine delivery for Blu and Vuse but not the SREC. We report, for the first time, reactive free-radicals in aerosols from all closed-system e-cigs tested, albeit at levels lower than cigarette smoke. Formaldehyde, acetaldehyde, acetone, and propionaldehyde were detected in the aerosols of all tested e-cigs. Carbonyl and free radical production is affected by puff-duration and puff volume. Overall, SREC was more efficient at aerosol and nicotine production than both Blu and Vuse. In terms of carbonyl and free radical levels, SREC delivered lower or similar levels to both other devices.


Assuntos
Acetaldeído/análise , Acetona/análise , Acroleína/análise , Sistemas Eletrônicos de Liberação de Nicotina/normas , Formaldeído/análise , National Institute on Drug Abuse (U.S.)/legislação & jurisprudência , Nicotina/análise , Produtos do Tabaco/normas , Aerossóis/análise , Radicais Livres/análise , Humanos , Estados Unidos
7.
Nicotine Tob Res ; 21(9): 1274-1278, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-30346584

RESUMO

INTRODUCTION: Free radicals and carbonyls produced by electronic cigarettes (e-cigs) have the potential to inflict oxidative stress. Recently, Juul e-cigs have risen drastically in popularity; however, there is no data on nicotine and oxidant yields from this new e-cig design. METHODS: Aerosol generated from four different Juul flavors was analyzed for carbonyls, nicotine, and free radicals. The e-liquids were analyzed for propylene glycol (PG) and glycerol (GLY) concentrations. To determine the effects of e-liquid on oxidant production, Juul pods were refilled with nicotine-free 30:70 or 60:40 PG:GLY with or without citral. RESULTS: No significant differences were found in nicotine (164 ± 41 µg/puff), free radical (5.85 ± 1.20 pmol/puff), formaldehyde (0.20 ± 0.10 µg/puff), and acetone (0.20 ± 0.05 µg/puff) levels between flavors. The PG:GLY ratio in e-liquids was ~30:70 across all flavors with GLY being slightly higher in tobacco and mint flavors. In general, when Juul e-liquids were replaced with nicotine-free 60:40 PG:GLY, oxidant production increased up to 190% and, with addition of citral, increased even further. CONCLUSIONS: Juul devices produce free radicals and carbonyls, albeit, at levels substantially lower than those observed in other e-cig products, an effect only partially because of a low PG:GLY ratio. Nicotine delivery by these devices was as high as or higher than the levels previously reported from cigarettes. IMPLICATIONS: These findings suggest that oxidative stress and/or damage resulting from Juul use may be lower than that from cigarettes or other e-cig devices; however, the high nicotine levels are suggestive of a greater addiction potential.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Radicais Livres/análise , Nicotina/análise , Estresse Oxidativo/fisiologia , Aromatizantes/administração & dosagem , Aromatizantes/análise , Radicais Livres/administração & dosagem , Humanos , Nicotina/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Propilenoglicol/administração & dosagem , Propilenoglicol/análise
8.
Chem Res Toxicol ; 31(12): 1339-1347, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30426738

RESUMO

Previous literature has shown that adding charcoal to cigarette filters can have varying effects on the delivery of toxic carbonyls depending on filter design, amount of charcoal, and puffing profiles. However, these studies have relied on either comparisons between commercially available charcoal and noncharcoal filtered cigarettes or experimental modification of filters to insert a charcoal plug into existing cellulose acetate filters. Make-your-own (MYO) cigarettes can help obviate many of the potential pitfalls of previous studies; thus, we conducted studies using commercial charcoal cigarettes and MYO cigarettes to determine the effects of charcoal on carbonyl delivery. To do this, we analyzed carbonyls in mainstream smoke by HPLC-UV after derivatization with 2,4-dinitrophenylhydrazine (DNPH). Charcoal was added in-line after the cigarettes or through the use of MYO charcoal cigarette tubes. MYO cigarettes had carbonyl deliveries similar to that of 3R4F research cigarette, regardless of tobacco type. The greatest effect on carbonyl delivery was observed with 200 mg of charcoal, significantly reducing all carbonyls under both methods tested. However, "on-tow" design charcoal filters, available on many commercially available charcoal brands, appeared to have a minimal effect on carbonyl delivery under intense smoking methods. Overall, we found that charcoal, when added in sufficient quantity (200 mg) as a plug, can substantially reduce carbonyl delivery for both MYO and conventional cigarettes. As carbonyls are related to negative health outcomes, such reductions may be associated with reductions in carbonyl-related harm in smokers.


Assuntos
Aldeídos/química , Carvão Vegetal/química , Cetonas/química , Nicotiana/química , Fumaça/análise , Cromatografia Líquida de Alta Pressão , Fenil-Hidrazinas/química , Espectrofotometria Ultravioleta
9.
Chem Res Toxicol ; 31(1): 4-12, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29161504

RESUMO

The ever-evolving market of electronic cigarettes (e-cigarettes) presents a challenge for analyzing and characterizing the harmful products they can produce. Earlier we reported that e-cigarette aerosols can deliver high levels of reactive free radicals; however, there are few data characterizing the production of these potentially harmful oxidants. Thus, we have performed a detailed analysis of the different parameters affecting the production of free radical by e-cigarettes. Using a temperature-controlled e-cigarette device and a novel mechanism for reliably simulating e-cigarette usage conditions, including coil activation and puff flow, we analyzed the effects of temperature, wattage, and e-liquid solvent composition of propylene glycol (PG) and glycerol (GLY) on radical production. Free radicals in e-cigarette aerosols were spin-trapped and analyzed using electron paramagnetic resonance. Free radical production increased in a temperature-dependent manner, showing a nearly 2-fold increase between 100 and 300 °C under constant-temperature conditions. Free radical production under constant wattage showed an even greater increase when going from 10 to 50 W due, in part, to higher coil temperatures compared to constant-temperature conditions. The e-liquid PG content also heavily influenced free radical production, showing a nearly 3-fold increase upon comparison of ratios of 0:100 (PG:GLY) and 100:0 (PG:GLY). Increases in PG content were also associated with increases in aerosol-induced oxidation of biologically relevant lipids. These results demonstrate that the production of reactive free radicals in e-cigarette aerosols is highly solvent dependent and increases with an increase in temperature. Radical production was somewhat dependent on aerosol production at higher temperatures; however, disproportionately high levels of free radicals were observed at ≥100 °C despite limited aerosol production. Overall, these findings suggest that e-cigarettes can be designed to minimize exposure to these potentially harmful products.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Glicerol/química , Propilenoglicol/química , Temperatura , Aerossóis/química , Radicais Livres/síntese química , Radicais Livres/química , Solventes/química
10.
Chem Res Toxicol ; 31(5): 325-331, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29701955

RESUMO

Cigarette smoke is a major exogenous source of free radicals, and the resulting oxidative stress is one of the major causes of smoking-caused diseases. Yet, many of the factors that impact free radical delivery from cigarettes remain unclear. In this study, we machine-smoked cigarettes and measured the levels of gas- and particulate-phase radicals by electron paramagnetic resonance (EPR) spectroscopy using standardized smoking regimens (International Organization of Standardization (ISO) and Canadian Intense (CI)), puffing parameters, and tobacco blends. Radical delivery per cigarette was significantly greater in both gas (4-fold) and particulate (6-fold) phases when cigarettes were smoked under the CI protocol compared to the ISO protocol. Total puff volume per cigarette was the major factor with radical production being proportional to total volume, regardless of whether volume differences were achieved by changes in individual puff volume or puff frequency. Changing puff shape (bell vs sharp vs square) or puff duration (1-5 s), without changing volume, had no effect on radical yields. Tobacco variety did have a significant impact on free radical production, with gas-phase radicals highest in reconstituted > burley > oriental > bright tobacco and particulate-phase radicals highest in burley > bright > oriental > reconstituted tobacco. Our findings show that modifiable cigarette design features and measurable user smoking behaviors are key factors determining free radical exposure in smokers.


Assuntos
Radicais Livres/análise , Nicotiana/química , Nicotiana/classificação , Fumaça/análise , Fumar , Produtos do Tabaco , Humanos
11.
Chem Res Toxicol ; 31(8): 745-751, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29979036

RESUMO

The addition of charcoal in cigarette filters may be an effective means of reducing many toxicants from tobacco smoke. Free radicals are a highly reactive class of oxidants abundant in cigarette smoke, and here we evaluated the effectiveness of charcoal to reduce free radical delivery by comparing radical yields from commercially available cigarettes with charcoal-infused filters to those without and by examining the effects of incorporating charcoal into conventional cigarette filters on radical production. Commercial cigarettes containing charcoal filters produced 40% fewer gas-phase radicals than did regular cellulose acetate filter cigarettes when smoked using the International Organization of Standardization (ISO, p = 0.07) and Canadian Intense (CI, p < 0.01) smoking protocols. While mean-particulate-phase radicals were 25-27% lower in charcoal cigarettes, differences from noncharcoal products were not significant ( p = 0.06-0.22). When cellulose acetate cigarette filters were modified to incorporate different types and amounts of activated charcoal, reductions in gas-phase (>70%), but not particulate-phase, radicals were observed. The reductions in gas-phase radicals were similar for the three types of charcoal. Decreases in radical production were dose-responsive with increasing amounts of charcoal (25-300 mg) with as little as 25 mg of activated charcoal reducing gas-phase radicals by 41%. In all studies, charcoal had less of an effect on nicotine delivery, which was decreased 33% at the maximal amount of charcoal tested (300 mg). Overall, these results support the potential consideration of charcoal in cigarette filters as a means to reduce exposure to toxic free radicals from cigarettes and other combustible tobacco products.


Assuntos
Carvão Vegetal , Nicotiana/química , Fumaça/análise , Produtos do Tabaco , Cromatografia Gasosa/métodos , Radicais Livres/química
12.
Free Radic Biol Med ; 190: 116-123, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35961467

RESUMO

Tobacco smoke free radicals play an important role in the development of smoking related adverse health effects. We previously reported that gas phase (GP) radicals vary greatly by cigarette brand and tobacco variety and are highly correlated with levels of NNK in smoke. Since NNK production in tobacco is dependent on nitrate, we proposed that GP radical production may also be associated with tobacco nitrate content. To test this, we examined the relationship between intrinsic nitrate levels in 15 individual tobacco types and the levels of free radicals delivered in mainstream smoke from cigarettes produced from these tobaccos. Intrinsic nitrate levels varied >250-fold among the tobacco types, ranging from <0.1 mg/g tobacco in the Bright Leaf types to 24.1 ±â€¯0.4 mg/g in Light Fire Cured Virginia tobacco. Among the tobacco types tested, GP radicals were highly correlated with nitrate levels (r = 0.96, p < 0.0001). To investigate nitrate-specific changes to free radical production during smoking, different concentrations of exogenous sodium nitrate were added to unsmoked shredded leaves of 4 different tobacco types (Bright Leaf Sweet Virginia, American Virginia, Semi-Oriental 456, and reconstituted). Nitrate addition resulted in dose-dependent increases in GP radicals in the corresponding smoke, supporting our hypothesis that intrinsic nitrate levels are responsible for GP radical production in cigarette smoke. We also observed increases in NNK levels as a function of added nitrate that varied significantly among the 4 tobacco types tested, implying that other tobacco-type related factors may be impacting nicotine nitrosation during pyrolysis. Altogether, these findings have identified tobacco nitrate as a key factor in the production of GP radicals, but to a lesser extent with PP radicals, as well as NNK during combustion and highlight its potential implication as a target for regulation.


Assuntos
Nitrosaminas , Produtos do Tabaco , Radicais Livres , Nitratos , Óxidos de Nitrogênio , Nicotiana
13.
Tob Induc Dis ; 20: 45, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611070

RESUMO

INTRODUCTION: Cigarette smoking poses many health risks and can cause chronic obstructive pulmonary disease (COPD), cardiovascular disease, cancer of the lung and other organs. Smokers can substantially reduce their risks of these diseases by quitting, but nicotine addiction makes this difficult. Alternatives, such as electronic cigarettes (e-cigarettes), may provide a similar dose of nicotine, but expose users to fewer toxic chemicals than traditional cigarettes and may still be harmful especially for dual users, therefore, we sought to develop bioassays that can assess the potential toxicity and inflammatory response induced by e-cigarette liquids (e-liquids) with and without flavors. METHODS: E-liquids with varying nicotine content and flavors were aerosolized through growth media and exposed to human bronchial epithelial cell line (BEAS-2B) and human monocyte-macrophage cell line (THP-1) in vitro. Cytotoxicity in response to e-cigarette aerosols was measured by MTT assay in BEAS-2B cells and inflammatory response was measured by TNF-α, IL-6, IL-8, and MCP-1 released from THP-1 cells. In addition, the oxidative stress marker, REDD1, and impact on phagocytosis, was assessed following exposure of BEAS-2B and THP-1 derived macrophages, respectively. Cigarette smoke extract was used as a positive control with known cytotoxicity and impairment of inflammatory response. RESULTS: E-cigarette aerosols induced moderate cellular toxicity in bronchial epithelial cells. Our data also show that low nicotine levels are less damaging to the bronchial epithelial cells, and flavors in e-liquids influence the combined inflammatory response markers, phagocytosis, and REDD1 when examined in vitro. CONCLUSIONS: Our in vitro bioassays can be utilized to effectively measure flavor and nicotine-induced effects of e-cigarettes on combined inflammatory response and cytotoxicity in human macrophages and human bronchial epithelial cells, respectively.

14.
Exp Clin Psychopharmacol ; 30(6): 947-958, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34110883

RESUMO

Regulations limiting the sale of flavored e-cigarette products are controversial for their potential to interfere with e-cigarette use as a cessation aid in addition to curbing youth use. Limited research suggests that flavor might enhance the addictive potential of e-cigarettes; however, the acute effects of flavored aerosols on brain function among humans have not been assessed. The present study aimed to isolate and compare the neural substrates of flavored and unflavored e-cigarette aerosols on brain function among nine female daily smokers. Participants inhaled aerosolized e-liquid with 36 mg/mL of nicotine with and without a strawberry-vanilla flavor while undergoing functional magnetic resonance imaging. We used general linear modeling to compare whole-brain mean neural activation and seed-to-voxel task-based functional connectivity between the flavored and unflavored inhalation runs. Contrary to our hypothesis, the flavored aerosol was associated with weaker activation than the unflavored aerosol in the brain stem and bilateral parietal-temporal-occipital region of the cortex. Instead, the flavor engaged taste-related brain regions while suppressing activation of the neural circuits typically engaged during smoking and nicotine administration. Alternatively, functional connectivity between subcortical dopaminergic brain seeds and cortical brain regions involved in motivation and reward salience were stronger during the flavored compared to unflavored aerosol run. The findings suggest that fruity and dessert-flavored e-cigarettes may dampen the reward experience of aerosol inhalation for smokers who initiate e-cigarette use by inhibiting activation of dopaminergic brain circuits. These preliminary findings may have implications for understanding how regulations on flavored e-cigarettes might impact their use as cessation aids. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Adolescente , Humanos , Feminino , Fumantes , Nicotina , Paladar , Imageamento por Ressonância Magnética , Aromatizantes , Encéfalo
15.
Dev Biol ; 341(1): 213-21, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20197066

RESUMO

Galphai proteins play major roles in the developing and mature nervous system, ranging from the control of cellular proliferation to modulating synaptic plasticity. Although best known for transducing signals from activated seven transmembrane G-protein coupled receptors (GPCRs) when bound to GTP, key cellular functions for Galphai-GDP are beginning to emerge. Here, we show that Galphai2 is expressed in motor neuron progenitors that are differentiating to form postmitotic motor neurons in the developing spinal cord. Ablation of Galphai2 causes deficits in motor neuron generation but no changes in motor neuron progenitor patterning or specification, consistent with a function for Galphai2 in regulating motor neuron differentiation. We show that Galphai2 function is mediated in part by its interaction with GDE2, a known regulator of motor neuron differentiation, and that disruption of the GDE2/Galphai2 complex in vivo causes motor neuron deficits analogous to Galphai2 ablation. Galphai2 preferentially associates with GDE2 when bound to GDP, invoking GPCR-independent functions for Galphai2 in the control of spinal motor neuron differentiation.


Assuntos
Diferenciação Celular , Embrião de Galinha/citologia , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Neurônios Motores/metabolismo , Medula Espinal/metabolismo , Animais , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Medula Espinal/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo
16.
Dev Biol ; 316(2): 371-82, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18329011

RESUMO

Retinoic acid (RA) signaling plays critical roles in diverse cellular processes during nervous system development. In mouse models, the roles for RA signals in telencephalic development remain unclear, partly because of the ambiguity of RA telencephalic sources after E8.75. Here, we have developed a genetic approach that utilizes Cre-lox technology to conditionally express a potent dominant negative retinoid receptor, RAR403, in vivo. This approach blocks RA signaling pathways at the receptor level, enabling the disruption of RA signals in contexts in which the RA source is unknown. RAR403 expression throughout the developing telencephalon causes pronounced hypoplasia resulting from defective proliferation in dorsal telencephalic progenitors and extensive cell death. Furthermore, Nkx2.1(+) progenitors in the medial ganglionic eminence (MGE) are misspecified such that they acquire a subset of lateral ganglionic eminence (LGE)-specific properties at the expense of MGE fates. This genetic approach reveals new roles for RA signaling in telencephalic proliferation, survival and fate specification, and underscores its utility in investigating the function of retinoid signaling pathways throughout peri- and postnatal development.


Assuntos
Divisão Celular/fisiologia , Sobrevivência Celular/fisiologia , Neurônios Motores/fisiologia , Receptores do Ácido Retinoico/genética , Telencéfalo/embriologia , Animais , Clonagem Molecular , Desenvolvimento Embrionário , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Neurônios Motores/citologia , Fases de Leitura Aberta , Receptores do Ácido Retinoico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Telencéfalo/citologia
17.
Free Radic Biol Med ; 120: 72-79, 2018 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29548792

RESUMO

BACKGROUND: Flavoring chemicals, or flavorants, have been used in electronic cigarettes (e-cigarettes) since their inception; however, little is known about their toxicological effects. Free radicals present in e-cigarette aerosols have been shown to induce oxidative stress resulting in damage to proliferation, survival, and inflammation pathways in the cell. Aerosols generated from e-liquid solvents alone contain high levels of free radicals but few studies have looked at how these toxins are modulated by flavorants. OBJECTIVES: We investigated the effects of different flavorants on free radical production in e-cigarette aerosols. METHODS: Free radicals generated from 49 commercially available e-liquid flavors were captured and analyzed using electron paramagnetic resonance (EPR). The flavorant composition of each e-liquid was analyzed by gas chromatography mass spectroscopy (GCMS). Radical production was correlated with flavorant abundance. Ten compounds were identified and analyzed for their impact on free radical generation. RESULTS: Nearly half of the flavors modulated free radical generation. Flavorants with strong correlations included ß-damascone, δ-tetradecalactone, γ-decalactone, citral, dipentene, ethyl maltol, ethyl vanillin, ethyl vanillin PG acetal, linalool, and piperonal. Dipentene, ethyl maltol, citral, linalool, and piperonal promoted radical formation in a concentration-dependent manner. Ethyl vanillin inhibited the radical formation in a concentration dependent manner. Free radical production was closely linked with the capacity to oxidize biologically-relevant lipids. CONCLUSIONS: Our results suggest that flavoring agents play an important role in either enhancing or inhibiting the production of free radicals in flavored e-cigarette aerosols. This information is important for developing regulatory strategies aimed at reducing potential harm from e-cigarettes.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/química , Radicais Livres/análise , Propilenoglicol/química , Solventes/química , Aerossóis/análise , Aerossóis/química
18.
J Nutr Biochem ; 40: 201-208, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27951472

RESUMO

Whereas a number of studies have examined the effects of soy isoflavones and tocopherols on colonic inflammation, few have examined soy protein. We determined the radical scavenging and cytoprotective effects of soy protein concentrate (SPC) in vitro and its anti-inflammatory effects in dextran sulfate sodium (DSS)-treated mice. Cotreatment with SPC protected Caco-2 human colon cells from H2O2-induced cell death and mitigated intracellular oxidative stress. Treatment of differentiated Caco-2 cells with SPC blunted DSS-induced increases in monolayer permeability. Pepsin/pancreatin-digested SPC had reduced radical scavenging activity, but retained the monolayer protective effects of SPC. In vivo, 1.5% DSS caused body weight loss, colon shortening, and splenomegaly in CF-1 mice. Co-treatment with 12% SPC mitigated DSS-induced body weight loss and splenomegaly. DSS increased colonic interleukin (IL)-1ß, IL-6, and monocyte chemotactic protein-1 expression. The levels of these markers were significantly lower in mice co-treated with SPC. SPC prevented DSS-mediated reductions in colonic glucagon-like peptide 2 levels, suggesting that SPC can prevent loss of gut barrier function, but no significant effect on claudin 1 and occludin mRNA levels of was observed. SPC-treated mice had lower colonic mRNA expression of toll-like receptor 4 and nucleotide-binding oligomerization domain-containing protein-like receptor family, pyrin domain containing protein 3 (NLRP3), and lower caspase-1 enzyme activity than DSS-treated mice. In summary, SPC exerted antioxidant and cytoprotective effects in vitro and moderated the severity of DSS-induced inflammation and loss of gut barrier function in vivo. These effects appear to be mediated in part through reduced NLRP3 expression and caspase 1 activity.


Assuntos
Colite/tratamento farmacológico , Colite/fisiopatologia , Proteínas de Soja/farmacologia , Animais , Antioxidantes/farmacologia , Biomarcadores/metabolismo , Células CACO-2 , Quimiocina CCL2/metabolismo , Colite/induzido quimicamente , Sulfato de Dextrana/toxicidade , Peptídeo 2 Semelhante ao Glucagon/metabolismo , Humanos , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos , Permeabilidade , Proteínas de Soja/química
19.
Mol Nutr Food Res ; 60(10): 2267-2274, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27218415

RESUMO

SCOPE: (-)-Epigallocatechin-3-gallate (EGCG) has been reported to have putative health effects including the prevention of inflammation and obesity. Historically, polyphenols have been regarded as antinutritionals and while such effects may be beneficial in obese subjects, they may be deleterious in nutritionally compromised individuals. METHODS AND RESULTS: We examined the effect of EGCG in the dextran sulfate sodium (DSS)-treated mouse model of ulcerative colitis. Following induction of colitis, mice were treated with EGCG (3.2 mg/g) as the sole source of drinking fluid for 3 days. EGCG treatment mitigated DSS-induced colon shortening and spleen enlargement. EGCG also decreased colonic protein levels of IL-1ß, IL-6, and tumor necrosis factor-α, as well as colonic lipid peroxides compared to DSS-treated controls. We observed that EGCG reduced DSS-induced gastrointestinal permeability. These beneficial effects were offset by enhanced body weight loss in EGCG-treated mice compared to DSS-treated controls. These effects were related to decreased protein and lipid digestion in EGCG-treated mice compared to DSS-treated controls. CONCLUSIONS: Our results suggest that although EGCG may exert anti-inflammatory effects, its ability to modulate macronutrient digestion may represent a dose-limiting adverse effect that must be considered in the context of its use for treating inflammatory bowel disease.


Assuntos
Catequina/análogos & derivados , Colite Ulcerativa/tratamento farmacológico , Redução de Peso/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Células CACO-2 , Catequina/administração & dosagem , Catequina/farmacologia , Quimiocina CCL2/metabolismo , Colite Ulcerativa/induzido quimicamente , Sulfato de Dextrana/efeitos adversos , Digestão/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Absorção Intestinal/efeitos dos fármacos , Masculino , Camundongos Endogâmicos , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos
20.
J Nutr Biochem ; 26(8): 827-31, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25869594

RESUMO

Procyanidins are available in the diet from sources such as cocoa and grapes. Procyanidins are unique in that they are comprised of repeating monomeric units and can exist in various degrees of polymerization. The degree of polymerization plays a role in determining the biological activities of procyanidins. However, generalizations cannot be made regarding the correlation between procyanidin structure and bioactivity because the size-activity relationship appears to be system dependent. Our aim was to screen fractions of procyanidins with differing degrees of polymerization in vitro for anti-inflammatory activities in models of colonic inflammation. Monomeric, oligomeric and polymeric cocoa procyanidin fractions were screened using cell models of disrupted membrane integrity and inflammation in human colon cells. High-molecular-weight polymeric procyanidins were the most effective at preserving membrane integrity and reducing secretion of interleukin-8 in response to inflammatory stimuli. Conversely, oligomeric procyanidins appeared to be the least effective. These results suggest that polymeric cocoa procyanidins may be the most effective for preventing loss of gut barrier function and epithelial inflammation, which are critical steps in the pathogenesis of metabolic endotoxemia, inflammatory bowel disease and colon cancer. Therefore, further investigations of the potential health-protective benefits of cocoa procyanidins with distinct degrees of polymerization, particularly high-molecular-weight procyanidins, are warranted.


Assuntos
Anti-Inflamatórios/farmacologia , Biflavonoides/farmacologia , Cacau/química , Catequina/farmacologia , Colo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Proantocianidinas/farmacologia , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Colo/metabolismo , Células HT29 , Humanos , Interleucina-8/metabolismo , Peso Molecular , Permeabilidade , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA