Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(10): 1630-1645, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35504280

RESUMO

Atherosclerosis is an inflammatory disease of the large arteries that is the major cause of cardiovascular disease (CVD) and stroke. Here, we review the current understanding of the molecular, cellular, genetic, and environmental contributions to atherosclerosis, from both individual pathway and systems perspectives. We place an emphasis on recent developments, some of which have yielded unexpected biology, including previously unknown heterogeneity of inflammatory and smooth muscle cells in atherosclerotic lesions, roles for senescence and clonal hematopoiesis, and links to the gut microbiome.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Artérias/metabolismo , Aterosclerose/metabolismo , Hematopoiese Clonal , Humanos , Miócitos de Músculo Liso/metabolismo
2.
Circ Res ; 134(11): 1405-1423, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38639096

RESUMO

BACKGROUND: While our understanding of the single-cell gene expression patterns underlying the transformation of vascular cell types during the progression of atherosclerosis is rapidly improving, the clinical and pathophysiological relevance of these changes remains poorly understood. METHODS: Single-cell RNA sequencing data generated with SmartSeq2 (≈8000 genes/cell) in 16 588 single cells isolated during atherosclerosis progression in Ldlr-/-Apob100/100 mice with human-like plasma lipoproteins and from humans with asymptomatic and symptomatic carotid plaques was clustered into multiple subtypes. For clinical and pathophysiological context, the advanced-stage and symptomatic subtype clusters were integrated with 135 tissue-specific (atherosclerotic aortic wall, mammary artery, liver, skeletal muscle, and visceral and subcutaneous, fat) gene-regulatory networks (GRNs) inferred from 600 coronary artery disease patients in the STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task) study. RESULTS: Advanced stages of atherosclerosis progression and symptomatic carotid plaques were largely characterized by 3 smooth muscle cells (SMCs), and 3 macrophage subtype clusters with extracellular matrix organization/osteogenic (SMC), and M1-type proinflammatory/Trem2-high lipid-associated (macrophage) phenotypes. Integrative analysis of these 6 clusters with STARNET revealed significant enrichments of 3 arterial wall GRNs: GRN33 (macrophage), GRN39 (SMC), and GRN122 (macrophage) with major contributions to coronary artery disease heritability and strong associations with clinical scores of coronary atherosclerosis severity. The presence and pathophysiological relevance of GRN39 were verified in 5 independent RNAseq data sets obtained from the human coronary and aortic artery, and primary SMCs and by targeting its top-key drivers, FRZB and ALCAM in cultured human coronary artery SMCs. CONCLUSIONS: By identifying and integrating the most gene-rich single-cell subclusters of atherosclerosis to date with a coronary artery disease framework of GRNs, GRN39 was identified and independently validated as being critical for the transformation of contractile SMCs into an osteogenic phenotype promoting advanced, symptomatic atherosclerosis.


Assuntos
Aterosclerose , Redes Reguladoras de Genes , Análise de Célula Única , Humanos , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Camundongos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Masculino , Placa Aterosclerótica , Progressão da Doença , Feminino , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Knockout , Receptores de LDL/genética , Receptores de LDL/metabolismo , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia
3.
Circ Res ; 132(3): 323-338, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597873

RESUMO

BACKGROUND: Coronary artery disease (CAD) is the leading cause of death worldwide. Recent meta-analyses of genome-wide association studies have identified over 175 loci associated with CAD. The majority of these loci are in noncoding regions and are predicted to regulate gene expression. Given that vascular smooth muscle cells (SMCs) play critical roles in the development and progression of CAD, we aimed to identify the subset of the CAD loci associated with the regulation of transcription in distinct SMC phenotypes. METHODS: We measured gene expression in SMCs isolated from the ascending aortas of 151 heart transplant donors of various genetic ancestries in quiescent or proliferative conditions and calculated the association of their expression and splicing with ~6.3 million imputed single-nucleotide polymorphism markers across the genome. RESULTS: We identified 4910 expression and 4412 splicing quantitative trait loci (sQTLs) representing regions of the genome associated with transcript abundance and splicing. A total of 3660 expression quantitative trait loci (eQTLs) had not been observed in the publicly available Genotype-Tissue Expression dataset. Further, 29 and 880 eQTLs were SMC-specific and sex-biased, respectively. We made these results available for public query on a user-friendly website. To identify the effector transcript(s) regulated by CAD loci, we used 4 distinct colocalization approaches. We identified 84 eQTL and 164 sQTL that colocalized with CAD loci, highlighting the importance of genetic regulation of mRNA splicing as a molecular mechanism for CAD genetic risk. Notably, 20% and 35% of the eQTLs were unique to quiescent or proliferative SMCs, respectively. One CAD locus colocalized with a sex-specific eQTL (TERF2IP), and another locus colocalized with SMC-specific eQTL (ALKBH8). The most significantly associated CAD locus, 9p21, was an sQTL for the long noncoding RNA CDKN2B-AS1, also known as ANRIL, in proliferative SMCs. CONCLUSIONS: Collectively, our results provide evidence for the molecular mechanisms of genetic susceptibility to CAD in distinct SMC phenotypes.


Assuntos
Doença da Artéria Coronariana , Masculino , Feminino , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Estudo de Associação Genômica Ampla/métodos , Regulação da Expressão Gênica , Locos de Características Quantitativas , Predisposição Genética para Doença , Expressão Gênica , Polimorfismo de Nucleotídeo Único , Homólogo AlkB 8 da RNAt Metiltransferase/genética , Homólogo AlkB 8 da RNAt Metiltransferase/metabolismo
4.
Circ Res ; 132(9): 1144-1161, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37017084

RESUMO

BACKGROUND: Genome-wide association studies have identified hundreds of loci associated with common vascular diseases, such as coronary artery disease, myocardial infarction, and hypertension. However, the lack of mechanistic insights for many GWAS loci limits their translation into the clinic. Among these loci with unknown functions is UFL1-four-and-a-half LIM (LIN-11, Isl-1, MEC-3) domain 5 (FHL5; chr6q16.1), which reached genome-wide significance in a recent coronary artery disease/ myocardial infarction GWAS meta-analysis. UFL1-FHL5 is also associated with several vascular diseases, consistent with the widespread pleiotropy observed for GWAS loci. METHODS: We apply a multimodal approach leveraging statistical fine-mapping, epigenomic profiling, and ex vivo analysis of human coronary artery tissues to implicate FHL5 as the top candidate causal gene. We unravel the molecular mechanisms of the cross-phenotype genetic associations through in vitro functional analyses and epigenomic profiling experiments in coronary artery smooth muscle cells. RESULTS: We prioritized FHL5 as the top candidate causal gene at the UFL1-FHL5 locus through expression quantitative trait locus colocalization methods. FHL5 gene expression was enriched in the smooth muscle cells and pericyte population in human artery tissues with coexpression network analyses supporting a functional role in regulating smooth muscle cell contraction. Unexpectedly, under procalcifying conditions, FHL5 overexpression promoted vascular calcification and dysregulated processes related to extracellular matrix organization and calcium handling. Lastly, by mapping FHL5 binding sites and inferring FHL5 target gene function using artery tissue gene regulatory network analyses, we highlight regulatory interactions between FHL5 and downstream coronary artery disease/myocardial infarction loci, such as FOXL1 and FN1 that have roles in vascular remodeling. CONCLUSIONS: Taken together, these studies provide mechanistic insights into the pleiotropic genetic associations of UFL1-FHL5. We show that FHL5 mediates vascular disease risk through transcriptional regulation of downstream vascular remodeling gene programs. These transacting mechanisms may explain a portion of the heritable risk for complex vascular diseases.


Assuntos
Doença da Artéria Coronariana , Hipertensão , Infarto do Miocárdio , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Estudo de Associação Genômica Ampla , Remodelação Vascular , Infarto do Miocárdio/metabolismo , Hipertensão/metabolismo , Miócitos de Músculo Liso/metabolismo , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Fatores de Transcrição/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo
5.
PLoS Genet ; 18(6): e1010261, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35714152

RESUMO

Genome wide association studies (GWAS) have identified thousands of single nucleotide polymorphisms (SNPs) associated with the risk of common disorders. However, since the large majority of these risk SNPs reside outside gene-coding regions, GWAS generally provide no information about causal mechanisms regarding the specific gene(s) that are affected or the tissue(s) in which these candidate gene(s) exert their effect. The 'gold standard' method for understanding causal genes and their mechanisms of action are laborious basic science studies often involving sophisticated knockin or knockout mouse lines, however, these types of studies are impractical as a high-throughput means to understand the many risk variants that cause complex diseases like coronary artery disease (CAD). As a solution, we developed a streamlined, data-driven informatics pipeline to gain mechanistic insights on complex genetic loci. The pipeline begins by understanding the SNPs in a given locus in terms of their relative location and linkage disequilibrium relationships, and then identifies nearby expression quantitative trait loci (eQTLs) to determine their relative independence and the likely tissues that mediate their disease-causal effects. The pipeline then seeks to understand associations with other disease-relevant genes, disease sub-phenotypes, potential causality (Mendelian randomization), and the regulatory and functional involvement of these genes in gene regulatory co-expression networks (GRNs). Here, we applied this pipeline to understand a cluster of SNPs associated with CAD within and immediately adjacent to the gene encoding HDAC9. Our pipeline demonstrated, and validated, that this locus is causal for CAD by modulation of TWIST1 expression levels in the arterial wall, and by also governing a GRN related to metabolic function in skeletal muscle. Our results reconciled numerous prior studies, and also provided clear evidence that this locus does not govern HDAC9 expression, structure or function. This pipeline should be considered as a powerful and efficient way to understand GWAS risk loci in a manner that better reflects the highly complex nature of genetic risk associated with common disorders.


Assuntos
Doença da Artéria Coronariana , Estudo de Associação Genômica Ampla , Proteína 1 Relacionada a Twist/metabolismo , Animais , Doença da Artéria Coronariana/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Histona Desacetilases/metabolismo , Desequilíbrio de Ligação , Camundongos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Proteínas Repressoras/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 43(10): 1836-1850, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589136

RESUMO

BACKGROUND: Women presenting with coronary artery disease more often present with fibrous atherosclerotic plaques, which are currently understudied. Phenotypically modulated smooth muscle cells (SMCs) contribute to atherosclerosis in women. How these phenotypically modulated SMCs shape female versus male plaques is unknown. METHODS: Gene regulatory networks were created using RNAseq gene expression data from human carotid atherosclerotic plaques. The networks were prioritized based on sex bias, relevance for smooth muscle biology, and coronary artery disease genetic enrichment. Network expression was linked to histologically determined plaque phenotypes. In addition, their expression in plaque cell types was studied at single-cell resolution using single-cell RNAseq. Finally, their relevance for disease progression was studied in female and male Apoe-/- mice fed a Western diet for 18 and 30 weeks. RESULTS: Here, we identify multiple sex-stratified gene regulatory networks from human carotid atherosclerotic plaques. Prioritization of the female networks identified 2 main SMC gene regulatory networks in late-stage atherosclerosis. Single-cell RNA sequencing mapped these female networks to 2 SMC phenotypes: a phenotypically modulated myofibroblast-like SMC network and a contractile SMC network. The myofibroblast-like network was mostly expressed in plaques that were vulnerable in women. Finally, the mice ortholog of key driver gene MFGE8 (milk fat globule EGF and factor V/VIII domain containing) showed retained expression in advanced plaques from female mice but was downregulated in male mice during atherosclerosis progression. CONCLUSIONS: Female atherosclerosis is characterized by gene regulatory networks that are active in fibrous vulnerable plaques rich in myofibroblast-like SMCs.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Placa Aterosclerótica , Feminino , Masculino , Humanos , Camundongos , Animais , Placa Aterosclerótica/patologia , Redes Reguladoras de Genes , Miofibroblastos/metabolismo , Doença da Artéria Coronariana/patologia , Aterosclerose/patologia , Miócitos de Músculo Liso/metabolismo
7.
Genome Res ; 30(10): 1379-1392, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32967914

RESUMO

Sex differences in adipose tissue distribution and function are associated with sex differences in cardiometabolic disease. While many studies have revealed sex differences in adipocyte cell signaling and physiology, there is a relative dearth of information regarding sex differences in transcript abundance and regulation. We investigated sex differences in subcutaneous adipose tissue transcriptional regulation using omic-scale data from ∼3000 geographically and ethnically diverse human samples. We identified 162 genes with robust sex differences in expression. Differentially expressed genes were implicated in oxidative phosphorylation and adipogenesis. We further determined that sex differences in gene expression levels could be related to sex differences in the genetics of gene expression regulation. Our analyses revealed sex-specific genetic associations, and this finding was replicated in a study of 98 inbred mouse strains. The genes under genetic regulation in human and mouse were enriched for oxidative phosphorylation and adipogenesis. Enrichment analysis showed that the associated genetic loci resided within binding motifs for adipogenic transcription factors (e.g., PPARG and EGR1). We demonstrated that sex differences in gene expression could be influenced by sex differences in genetic regulation for six genes (e.g., FADS1 and MAP1B). These genes exhibited dynamic expression patterns during adipogenesis and robust expression in mature human adipocytes. Our results support a role for adipogenesis-related genes in subcutaneous adipose tissue sex differences in the genetic and environmental regulation of gene expression.


Assuntos
Adipogenia/genética , Tecido Adiposo/metabolismo , Regulação da Expressão Gênica , Caracteres Sexuais , Dessaturase de Ácido Graxo Delta-5 , Feminino , Genótipo , Humanos , Masculino , Fosforilação Oxidativa , Fatores de Transcrição/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(27): 15818-15826, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32541024

RESUMO

Atherosclerosis is the process underlying heart attack and stroke. Despite decades of research, its pathogenesis remains unclear. Dogma suggests that atherosclerotic plaques expand primarily via the accumulation of cholesterol and inflammatory cells. However, recent evidence suggests that a substantial portion of the plaque may arise from a subset of "dedifferentiated" vascular smooth muscle cells (SMCs) which proliferate in a clonal fashion. Herein we use multicolor lineage-tracing models to confirm that the mature SMC can give rise to a hyperproliferative cell which appears to promote inflammation via elaboration of complement-dependent anaphylatoxins. Despite being extensively opsonized with prophagocytic complement fragments, we find that this cell also escapes immune surveillance by neighboring macrophages, thereby exacerbating its relative survival advantage. Mechanistic studies indicate this phenomenon results from a generalized opsonin-sensing defect acquired by macrophages during polarization. This defect coincides with the noncanonical up-regulation of so-called don't eat me molecules on inflamed phagocytes, which reduces their capacity for programmed cell removal (PrCR). Knockdown or knockout of the key antiphagocytic molecule CD47 restores the ability of macrophages to sense and clear opsonized targets in vitro, allowing for potent and targeted suppression of clonal SMC expansion in the plaque in vivo. Because integrated clinical and genomic analyses indicate that similar pathways are active in humans with cardiovascular disease, these studies suggest that the clonally expanding SMC may represent a translational target for treating atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Clonagem Molecular , Ativação do Complemento , Miócitos de Músculo Liso/metabolismo , Fagocitose/fisiologia , Animais , Antígeno CD47/metabolismo , Linhagem da Célula , Proliferação de Células , Complemento C3/genética , Complemento C3/metabolismo , Feminino , Humanos , Inflamação , Macrófagos/metabolismo , Masculino , Camundongos Knockout para ApoE , Miócitos de Músculo Liso/citologia , Placa Aterosclerótica/metabolismo , Análise de Sequência de RNA , Regulação para Cima
9.
Ecotoxicol Environ Saf ; 249: 114426, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36525947

RESUMO

BACKGROUND: Electronic cigarette (e-cig) use is increasing worldwide, especially among young individuals. Spirometry measures airflow obstruction and is the primary tool for diagnosing/monitoring respiratory diseases in clinical settings. This study aims to assess the effects of chronic e-cig exposure on spirometric traits, and directly compare to conventional combustible-cigarette (c-cig). METHODS: We employed an e- and c-cig aerosol generation system that resembled human smoking/vaping scenario. Fifty 6-week old C57BL/6 mice were equally divided into five groups and exposed to clean air (control), e-cig aerosol (low- and high-dose), and c-cig aerosol (low- and high-dose), respectively, for 10 weeks. Afterwards, growth trajectory, spirometry and pulmonary pathology were analyzed. RESULTS: Both e- and c-cig exposure slowed down growth and weight gain. Low dose e-cig exposure (1 h exposure per day) resulted in minimal respiratory function damage. At high dose (2 h exposure per day), e-cig exposure deteriorated 7 spirometry traits but by a smaller magnitude than c-cig exposure. For example, comparing to clean air controls, high dose e- and c-cig exposure increased inspiratory resistance by 24.3% (p = 0.026) and 66.7% (p = 2.6e-5), respectively. Low-dose e-cig exposure increased alveolar macrophage count but did not lead to airway remodeling. In contrast, even low-dose c-cig caused alveoli break down and thickening of the small airway, hallmarks of airway obstructive disease. CONCLUSIONS: We conducted well-controlled animal exposure experiments assessing chronic e-cig exposure's effects on spirometry traits. Further, mechanistic study characterized airway remodeling, alveolar tissue lesion and inflammation induced by e- and c-cig exposure. Our findings provided scientific and public health insights on e-cig's health consequences, especially in adolescent users.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar , Produtos do Tabaco , Humanos , Camundongos , Animais , Adolescente , Remodelação das Vias Aéreas , Camundongos Endogâmicos C57BL , Aerossóis e Gotículas Respiratórios , Lesão Pulmonar/induzido quimicamente
10.
Circulation ; 143(7): 713-726, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33499648

RESUMO

BACKGROUND: Although sex differences in coronary artery disease are widely accepted with women developing more stable atherosclerosis than men, the underlying pathobiology of such differences remains largely unknown. In coronary artery disease, recent integrative systems biological studies have inferred gene regulatory networks (GRNs). Within these GRNs, key driver genes have shown great promise but have thus far been unidentified in women. METHODS: We generated sex-specific GRNs of the atherosclerotic arterial wall in 160 women and age-matched men in the STARNET study (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task). We integrated the female GRNs with single-cell RNA-sequencing data of the human atherosclerotic plaque and single-cell RNA sequencing of advanced atherosclerotic lesions from wild type and Klf4 knockout atherosclerotic smooth muscle cell (SMC) lineage-tracing mice. RESULTS: By comparing sex-specific GRNs, we observed clear sex differences in network activity within the atherosclerotic tissues. Genes more active in women were associated with mesenchymal cells and endothelial cells, whereas genes more active in men were associated with the immune system. We determined that key drivers of GRNs active in female coronary artery disease were predominantly found in (SMCs by single-cell sequencing of the human atherosclerotic plaques, and higher expressed in female plaque SMCs, as well. To study the functions of these female SMC key drivers in atherosclerosis, we examined single-cell RNA sequencing of advanced atherosclerotic lesions from wild type and Klf4 knockout atherosclerotic SMC lineage-tracing mice. The female key drivers were found to be expressed by phenotypically modulated SMCs and affected by Klf4, suggesting that sex differences in atherosclerosis involve phenotypic switching of plaque SMCs. CONCLUSIONS: Our systems approach provides novel insights into molecular mechanisms that underlie sex differences in atherosclerosis. To discover sex-specific therapeutic targets for atherosclerosis, an increased emphasis on sex-stratified approaches in the analysis of multi-omics data sets is warranted.


Assuntos
Aterosclerose/genética , Redes Reguladoras de Genes/genética , Miócitos de Músculo Liso/metabolismo , Animais , Aterosclerose/fisiopatologia , Diferenciação Celular , Feminino , Humanos , Camundongos , Fenótipo
11.
Circulation ; 143(18): 1809-1823, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626882

RESUMO

BACKGROUND: Coronary artery disease (CAD) is a multifactorial condition with both genetic and exogenous causes. The contribution of tissue-specific functional networks to the development of atherosclerosis remains largely unclear. The aim of this study was to identify and characterize central regulators and networks leading to atherosclerosis. METHODS: Based on several hundred genes known to affect atherosclerosis risk in mouse (as demonstrated in knockout models) and human (as shown by genome-wide association studies), liver gene regulatory networks were modeled. The hierarchical order and regulatory directions of genes within the network were based on Bayesian prediction models, as well as experimental studies including chromatin immunoprecipitation DNA-sequencing, chromatin immunoprecipitation mass spectrometry, overexpression, small interfering RNA knockdown in mouse and human liver cells, and knockout mouse experiments. Bioinformatics and correlation analyses were used to clarify associations between central genes and CAD phenotypes in both human and mouse. RESULTS: The transcription factor MAFF (MAF basic leucine zipper transcription factor F) interacted as a key driver of a liver network with 3 human genes at CAD genome-wide association studies loci and 11 atherosclerotic murine genes. Most importantly, expression levels of the low-density lipoprotein receptor (LDLR) gene correlated with MAFF in 600 CAD patients undergoing bypass surgery (STARNET [Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task]) and a hybrid mouse diversity panel involving 105 different inbred mouse strains. Molecular mechanisms of MAFF were tested in noninflammatory conditions and showed positive correlation between MAFF and LDLR in vitro and in vivo. Interestingly, after lipopolysaccharide stimulation (inflammatory conditions), an inverse correlation between MAFF and LDLR in vitro and in vivo was observed. Chromatin immunoprecipitation mass spectrometry revealed that the human CAD genome-wide association studies candidate BACH1 (BTB domain and CNC homolog 1) assists MAFF in the presence of lipopolysaccharide stimulation with respective heterodimers binding at the MAF recognition element of the LDLR promoter to transcriptionally downregulate LDLR expression. CONCLUSIONS: The transcription factor MAFF was identified as a novel central regulator of an atherosclerosis/CAD-relevant liver network. MAFF triggered context-specific expression of LDLR and other genes known to affect CAD risk. Our results suggest that MAFF is a missing link between inflammation, lipid and lipoprotein metabolism, and a possible treatment target.


Assuntos
Aterosclerose/metabolismo , Colesterol/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inflamação/metabolismo , Fator de Transcrição MafF/metabolismo , Proteínas Nucleares/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Knockout
12.
Basic Res Cardiol ; 117(1): 6, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35175464

RESUMO

The majority of risk loci identified by genome-wide association studies (GWAS) are in non-coding regions, hampering their functional interpretation. Instead, transcriptome-wide association studies (TWAS) identify gene-trait associations, which can be used to prioritize candidate genes in disease-relevant tissue(s). Here, we aimed to systematically identify susceptibility genes for coronary artery disease (CAD) by TWAS. We trained prediction models of nine CAD-relevant tissues using EpiXcan based on two genetics-of-gene-expression panels, the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) and the Genotype-Tissue Expression (GTEx). Based on these prediction models, we imputed gene expression of respective tissues from individual-level genotype data on 37,997 CAD cases and 42,854 controls for the subsequent gene-trait association analysis. Transcriptome-wide significant association (i.e. P < 3.85e-6) was observed for 114 genes. Of these, 96 resided within previously identified GWAS risk loci and 18 were novel. Stepwise analyses were performed to study their plausibility, biological function, and pathogenicity in CAD, including analyses for colocalization, damaging mutations, pathway enrichment, phenome-wide associations with human data and expression-traits correlations using mouse data. Finally, CRISPR/Cas9-based gene knockdown of two newly identified TWAS genes, RGS19 and KPTN, in a human hepatocyte cell line resulted in reduced secretion of APOB100 and lipids in the cell culture medium. Our CAD TWAS work (i) prioritized candidate causal genes at known GWAS loci, (ii) identified 18 novel genes to be associated with CAD, and iii) suggested potential tissues and pathways of action for these TWAS CAD genes.


Assuntos
Doença da Artéria Coronariana , Estudo de Associação Genômica Ampla , Animais , Doença da Artéria Coronariana/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Camundongos , Polimorfismo de Nucleotídeo Único , Transcriptoma
13.
Circ Res ; 127(12): 1552-1565, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33040646

RESUMO

RATIONALE: Coronary artery disease (CAD) is a major cause of morbidity and mortality worldwide. Recent genome-wide association studies revealed 163 loci associated with CAD. However, the precise molecular mechanisms by which the majority of these loci increase CAD risk are not known. Vascular smooth muscle cells (VSMCs) are critical in the development of CAD. They can play either beneficial or detrimental roles in lesion pathogenesis, depending on the nature of their phenotypic changes. OBJECTIVE: To identify genetic variants associated with atherosclerosis-relevant phenotypes in VSMCs. METHODS AND RESULTS: We quantified 12 atherosclerosis-relevant phenotypes related to calcification, proliferation, and migration in VSMCs isolated from 151 multiethnic heart transplant donors. After genotyping and imputation, we performed association mapping using 6.3 million genetic variants. We demonstrated significant variations in calcification, proliferation, and migration. These phenotypes were not correlated with each other. We performed genome-wide association studies for 12 atherosclerosis-relevant phenotypes and identified 4 genome-wide significant loci associated with at least one VSMC phenotype. We overlapped the previously identified CAD loci with our data set and found nominally significant associations at 79 loci. One of them was the chromosome 1q41 locus, which harbors MIA3. The G allele of the lead risk single nucleotide polymorphism (SNP) rs67180937 was associated with lower VSMC MIA3 expression and lower proliferation. Lentivirus-mediated silencing of MIA3 (melanoma inhibitory activity protein 3) in VSMCs resulted in lower proliferation, consistent with human genetics findings. Furthermore, we observed a significant reduction of MIA3 protein in VSMCs in thin fibrous caps of late-stage atherosclerotic plaques compared to early fibroatheroma with thick and protective fibrous caps in mice and humans. CONCLUSIONS: Our data demonstrate that genetic variants have significant influences on VSMC function relevant to the development of atherosclerosis. Furthermore, high MIA3 expression may promote atheroprotective VSMC phenotypic transitions, including increased proliferation, which is essential in the formation or maintenance of a protective fibrous cap.


Assuntos
Aterosclerose/genética , Aterosclerose/patologia , Variação Genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Aterosclerose/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibrose , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos Knockout para ApoE , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fenótipo , Polimorfismo de Nucleotídeo Único
14.
Bioinformatics ; 36(6): 1807-1813, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31688915

RESUMO

MOTIVATION: Recently, it has become feasible to generate large-scale, multi-tissue gene expression data, where expression profiles are obtained from multiple tissues or organs sampled from dozens to hundreds of individuals. When traditional clustering methods are applied to this type of data, important information is lost, because they either require all tissues to be analyzed independently, ignoring dependencies and similarities between tissues, or to merge tissues in a single, monolithic dataset, ignoring individual characteristics of tissues. RESULTS: We developed a Bayesian model-based multi-tissue clustering algorithm, revamp, which can incorporate prior information on physiological tissue similarity, and which results in a set of clusters, each consisting of a core set of genes conserved across tissues as well as differential sets of genes specific to one or more subsets of tissues. Using data from seven vascular and metabolic tissues from over 100 individuals in the STockholm Atherosclerosis Gene Expression (STAGE) study, we demonstrate that multi-tissue clusters inferred by revamp are more enriched for tissue-dependent protein-protein interactions compared to alternative approaches. We further demonstrate that revamp results in easily interpretable multi-tissue gene expression associations to key coronary artery disease processes and clinical phenotypes in the STAGE individuals. AVAILABILITY AND IMPLEMENTATION: Revamp is implemented in the Lemon-Tree software, available at https://github.com/eb00/lemon-tree. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Teorema de Bayes , Análise por Conglomerados , Perfilação da Expressão Gênica , Humanos
15.
Bioinformatics ; 36(12): 3910-3912, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32324845

RESUMO

SUMMARY: Single-cell RNA sequencing (scRNA-seq) is a technology to measure gene expression in single cells. It has enabled discovery of new cell types and established cell type atlases of tissues and organs. The widespread adoption of scRNA-seq has created a need for user-friendly software for data analysis. We have developed a web server, alona that incorporates several of the most popular single-cell analysis algorithms into a flexible pipeline. alona can perform quality filtering, normalization, batch correction, clustering, cell type annotation and differential gene expression analysis. Data are visualized in the web browser using an interface based on JavaScript, allowing the user to query genes of interest and visualize the cluster structure. alona accepts a compressed gene expression matrix and identifies cell clusters with a graph-based clustering strategy. Cell types are identified from a comprehensive collection of marker genes or by specifying a custom set of marker genes. AVAILABILITY AND IMPLEMENTATION: The service runs at https://alona.panglaodb.se and the Python package can be downloaded from https://oscar-franzen.github.io/adobo/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Célula Única , Software , Algoritmos , Perfilação da Expressão Gênica , Análise de Sequência de RNA
16.
J Hum Genet ; 66(6): 625-636, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33469137

RESUMO

The stress hormone cortisol modulates fuel metabolism, cardiovascular homoeostasis, mood, inflammation and cognition. The CORtisol NETwork (CORNET) consortium previously identified a single locus associated with morning plasma cortisol. Identifying additional genetic variants that explain more of the variance in cortisol could provide new insights into cortisol biology and provide statistical power to test the causative role of cortisol in common diseases. The CORNET consortium extended its genome-wide association meta-analysis for morning plasma cortisol from 12,597 to 25,314 subjects and from ~2.2 M to ~7 M SNPs, in 17 population-based cohorts of European ancestries. We confirmed the genetic association with SERPINA6/SERPINA1. This locus contains genes encoding corticosteroid binding globulin (CBG) and α1-antitrypsin. Expression quantitative trait loci (eQTL) analyses undertaken in the STARNET cohort of 600 individuals showed that specific genetic variants within the SERPINA6/SERPINA1 locus influence expression of SERPINA6 rather than SERPINA1 in the liver. Moreover, trans-eQTL analysis demonstrated effects on adipose tissue gene expression, suggesting that variations in CBG levels have an effect on delivery of cortisol to peripheral tissues. Two-sample Mendelian randomisation analyses provided evidence that each genetically-determined standard deviation (SD) increase in morning plasma cortisol was associated with increased odds of chronic ischaemic heart disease (0.32, 95% CI 0.06-0.59) and myocardial infarction (0.21, 95% CI 0.00-0.43) in UK Biobank and similarly in CARDIoGRAMplusC4D. These findings reveal a causative pathway for CBG in determining cortisol action in peripheral tissues and thereby contributing to the aetiology of cardiovascular disease.


Assuntos
Doenças Cardiovasculares/genética , Infarto do Miocárdio/genética , Transcortina/genética , alfa 1-Antitripsina/genética , Corticosteroides/sangue , Adulto , Bancos de Espécimes Biológicos , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/patologia , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Infarto do Miocárdio/patologia , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Reino Unido
17.
Nucleic Acids Res ; 47(7): e39, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30722045

RESUMO

The associations between diseases/traits and copy number variants (CNVs) have not been systematically investigated in genome-wide association studies (GWASs), primarily due to a lack of robust and accurate tools for CNV genotyping. Herein, we propose a novel ensemble learning framework, ensembleCNV, to detect and genotype CNVs using single nucleotide polymorphism (SNP) array data. EnsembleCNV (a) identifies and eliminates batch effects at raw data level; (b) assembles individual CNV calls into CNV regions (CNVRs) from multiple existing callers with complementary strengths by a heuristic algorithm; (c) re-genotypes each CNVR with local likelihood model adjusted by global information across multiple CNVRs; (d) refines CNVR boundaries by local correlation structure in copy number intensities; (e) provides direct CNV genotyping accompanied with confidence score, directly accessible for downstream quality control and association analysis. Benchmarked on two large datasets, ensembleCNV outperformed competing methods and achieved a high call rate (93.3%) and reproducibility (98.6%), while concurrently achieving high sensitivity by capturing 85% of common CNVs documented in the 1000 Genomes Project. Given this CNV call rate and accuracy, which are comparable to SNP genotyping, we suggest ensembleCNV holds significant promise for performing genome-wide CNV association studies and investigating how CNVs predispose to human diseases.


Assuntos
Variações do Número de Cópias de DNA/genética , Técnicas de Genotipagem/métodos , Aprendizado de Máquina , Polimorfismo de Nucleotídeo Único/genética , Conjuntos de Dados como Assunto , Genoma Humano/genética , Humanos , Controle de Qualidade
18.
PLoS Genet ; 14(12): e1007799, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30596636

RESUMO

GWAS identified variants associated with birth weight (BW), childhood obesity (CO) and childhood BMI (CBMI), and placenta is a critical organ for fetal development and postnatal health. We examined the role of placental transcriptome and eQTLs in mediating the genetic causes for BW, CO and CBMI, and applied integrative analysis (Colocalization and MetaXcan). GWAS loci associated with BW, CO, and CBMI were substantially enriched for placenta eQTLs (6.76, 4.83 and 2.26 folds, respectively). Importantly, compared to eQTLs of adult tissues, only placental eQTLs contribute significantly to both anthropometry outcomes at birth (BW) and childhood phenotypes (CO/CBMI). Eight, six and one transcripts colocalized with BW, CO and CBMI risk loci, respectively. Our study reveals that placental transcription in utero likely plays a key role in determining postnatal body size, and as such may hold new possibilities for therapeutic interventions to prevent childhood obesity.


Assuntos
Peso ao Nascer/genética , Obesidade Infantil/genética , Placenta/metabolismo , Transcriptoma , Índice de Massa Corporal , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Desenvolvimento Fetal/genética , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Masculino , Obesidade Infantil/patologia , Polimorfismo de Nucleotídeo Único , Gravidez , Locos de Características Quantitativas , Fatores de Risco
19.
PLoS Genet ; 14(11): e1007755, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30444878

RESUMO

Recent genome-wide association studies (GWAS) have identified multiple new loci which appear to alter coronary artery disease (CAD) risk via arterial wall-specific mechanisms. One of the annotated genes encodes LMOD1 (Leiomodin 1), a member of the actin filament nucleator family that is highly enriched in smooth muscle-containing tissues such as the artery wall. However, it is still unknown whether LMOD1 is the causal gene at this locus and also how the associated variants alter LMOD1 expression/function and CAD risk. Using epigenomic profiling we recently identified a non-coding regulatory variant, rs34091558, which is in tight linkage disequilibrium (LD) with the lead CAD GWAS variant, rs2820315. Herein we demonstrate through expression quantitative trait loci (eQTL) and statistical fine-mapping in GTEx, STARNET, and human coronary artery smooth muscle cell (HCASMC) datasets, rs34091558 is the top regulatory variant for LMOD1 in vascular tissues. Position weight matrix (PWM) analyses identify the protective allele rs34091558-TA to form a conserved Forkhead box O3 (FOXO3) binding motif, which is disrupted by the risk allele rs34091558-A. FOXO3 chromatin immunoprecipitation and reporter assays show reduced FOXO3 binding and LMOD1 transcriptional activity by the risk allele, consistent with effects of FOXO3 downregulation on LMOD1. LMOD1 knockdown results in increased proliferation and migration and decreased cell contraction in HCASMC, and immunostaining in atherosclerotic lesions in the SMC lineage tracing reporter mouse support a key role for LMOD1 in maintaining the differentiated SMC phenotype. These results provide compelling functional evidence that genetic variation is associated with dysregulated LMOD1 expression/function in SMCs, together contributing to the heritable risk for CAD.


Assuntos
Autoantígenos/genética , Doença da Artéria Coronariana/genética , Proteínas do Citoesqueleto/genética , Miócitos de Músculo Liso/metabolismo , Alelos , Animais , Autoantígenos/metabolismo , Becaplermina/metabolismo , Sítios de Ligação/genética , Células Cultivadas , Mapeamento Cromossômico , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/metabolismo , Vasos Coronários/metabolismo , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Proteína Forkhead Box O3/metabolismo , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Masculino , Camundongos , Camundongos Transgênicos , Modelos Cardiovasculares , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Ligação Proteica , Locos de Características Quantitativas , Fatores de Risco
20.
Am J Hum Genet ; 100(6): 885-894, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28552197

RESUMO

Genome-wide association studies (GWASs) have identified a multitude of genetic loci involved with traits and diseases. However, it is often unclear which genes are affected in such loci and whether the associated genetic variants lead to increased or decreased gene function. To mitigate this, we integrated associations of common genetic variants in 57 GWASs with 24 studies of expression quantitative trait loci (eQTLs) from a broad range of tissues by using a Mendelian randomization approach. We discovered a total of 3,484 instances of gene-trait-associated changes in expression at a false-discovery rate < 0.05. These genes were often not closest to the genetic variant and were primarily identified in eQTLs derived from pathophysiologically relevant tissues. For instance, genes with expression changes associated with lipid traits were mostly identified in the liver, and those associated with cardiovascular disease were identified in arterial tissue. The affected genes additionally point to biological processes implicated in the interrogated traits, such as the interleukin-27 pathway in rheumatoid arthritis. Further, comparing trait-associated gene expression changes across traits suggests that pleiotropy is a widespread phenomenon and points to specific instances of both agonistic and antagonistic pleiotropy. For instance, expression of SNX19 and ABCB9 is positively correlated with both the risk of schizophrenia and educational attainment. To facilitate interpretation, we provide this lexicon of how common trait-associated genetic variants alter gene expression in various tissues as the online database GWAS2Genes.


Assuntos
Regulação da Expressão Gênica , Predisposição Genética para Doença , Variação Genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Escolaridade , Redes Reguladoras de Genes , Pleiotropia Genética , Estudo de Associação Genômica Ampla , Humanos , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA