Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 159(7): 1698-710, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25497548

RESUMO

Cells control dynamic transitions in transcript levels by regulating transcription, processing, and/or degradation through an integrated regulatory strategy. Here, we combine RNA metabolic labeling, rRNA-depleted RNA-seq, and DRiLL, a novel computational framework, to quantify the level; editing sites; and transcription, processing, and degradation rates of each transcript at a splice junction resolution during the LPS response of mouse dendritic cells. Four key regulatory strategies, dominated by RNA transcription changes, generate most temporal gene expression patterns. Noncanonical strategies that also employ dynamic posttranscriptional regulation control only a minority of genes, but provide unique signal processing features. We validate Tristetraprolin (TTP) as a major regulator of RNA degradation in one noncanonical strategy. Applying DRiLL to the regulation of noncoding RNAs and to zebrafish embryogenesis demonstrates its broad utility. Our study provides a new quantitative approach to discover transcriptional and posttranscriptional events that control dynamic changes in transcript levels using RNA sequencing data.


Assuntos
Simulação por Computador , Células Dendríticas/metabolismo , Análise de Sequência de RNA/métodos , Animais , Perfilação da Expressão Gênica/métodos , Cinética , Lipopolissacarídeos/metabolismo , Camundongos , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA não Traduzido/metabolismo , Transcrição Gênica , Tristetraprolina/metabolismo , Peixe-Zebra/embriologia
2.
Cell ; 150(3): 563-74, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22863009

RESUMO

Myc oncoproteins directly regulate transcription by binding to target genes, yet this only explains a fraction of the genes affected by Myc. mRNA turnover is controlled via AU-binding proteins (AUBPs) that recognize AU-rich elements (AREs) found within many transcripts. Analyses of precancerous and malignant Myc-expressing B cells revealed that Myc regulates hundreds of ARE-containing (ARED) genes and select AUBPs. Notably, Myc directly suppresses transcription of Tristetraprolin (TTP/ZFP36), an mRNA-destabilizing AUBP, and this circuit is also operational during B lymphopoiesis and IL7 signaling. Importantly, TTP suppression is a hallmark of cancers with MYC involvement, and restoring TTP impairs Myc-induced lymphomagenesis and abolishes maintenance of the malignant state. Further, there is a selection for TTP loss in malignancy; thus, TTP functions as a tumor suppressor. Finally, Myc/TTP-directed control of select cancer-associated ARED genes is disabled during lymphomagenesis. Thus, Myc targets AUBPs to regulate ARED genes that control tumorigenesis.


Assuntos
Genes Supressores de Tumor , Linfoma de Células B/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Tristetraprolina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estabilidade de RNA , RNA Mensageiro/química
3.
Immunity ; 47(6): 1083-1099.e6, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29246442

RESUMO

The immunosuppressive protein PD-L1 is upregulated in many cancers and contributes to evasion of the host immune system. The relative importance of the tumor microenvironment and cancer cell-intrinsic signaling in the regulation of PD-L1 expression remains unclear. We report that oncogenic RAS signaling can upregulate tumor cell PD-L1 expression through a mechanism involving increases in PD-L1 mRNA stability via modulation of the AU-rich element-binding protein tristetraprolin (TTP). TTP negatively regulates PD-L1 expression through AU-rich elements in the 3' UTR of PD-L1 mRNA. MEK signaling downstream of RAS leads to phosphorylation and inhibition of TTP by the kinase MK2. In human lung and colorectal tumors, RAS pathway activation is associated with elevated PD-L1 expression. In vivo, restoration of TTP expression enhances anti-tumor immunity dependent on degradation of PD-L1 mRNA. We demonstrate that RAS can drive cell-intrinsic PD-L1 expression, thus presenting therapeutic opportunities to reverse the innately immunoresistant phenotype of RAS mutant cancers.


Assuntos
Antígeno B7-H1/imunologia , Neoplasias Colorretais/imunologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/imunologia , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Tristetraprolina/imunologia , Evasão Tumoral , Animais , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Clivagem do RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Transdução de Sinais , Tristetraprolina/genética
4.
FASEB J ; 38(1): e23338, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038723

RESUMO

Tristetraprolin (TTP; also known as NUP475, GOS24, or TIS11), encoded by Zfp36, is an RNA-binding protein that regulates target gene expression by promoting mRNA decay and preventing translation. Although previous studies have indicated that TTP deficiency is associated with systemic inflammation and a catabolic-like skeletal phenotype, the mechanistic underpinnings remain unclear. Here, using both TTP-deficient (TTPKO) and myeloid-specific TTPKO (cTTPKO) mice, we reveal that global absence or loss of TTP in the myeloid compartment results in a reduced bone microarchitecture, whereas gain-of-function TTP knock-in (TTPKI) mice exhibit no significant loss of bone microarchitecture. Flow cytometry analysis revealed a significant immunosuppressive immune cell phenotype with increased monocytic myeloid-derived suppressor cells (M-MDSCs) in TTPKO and cTTPKO mice, whereas no significant changes were observed in TTPKI mice. Single-cell transcriptomic analyses of bone marrow myeloid progenitor cell populations indicated a dramatic increase in early MDSC marker genes for both cTTPKO and TTPKO bone marrow populations. Consistent with these phenotypic and transcriptomic data, in vitro osteoclastogenesis analysis of bone marrow M-MDSCs from cTTPKO and TTPKO displayed enhanced osteoclast differentiation and functional capacity. Focused transcriptomic analyses of differentiated M-MDSCs showed increased osteoclast-specific transcription factors and cell fusion gene expression. Finally, functional data showed that M-MDSCs from TTP loss-of-function mice were capable of osteoclastogenesis and bone resorption in a context-dependent manner. Collectively, these findings indicate that TTP plays a central role in regulating osteoclastogenesis through multiple mechanisms, including induction of M-MDSCs that appear to regulate skeletal phenotype.


Assuntos
Células Supressoras Mieloides , Tristetraprolina , Animais , Camundongos , Osteoclastos/metabolismo , Osteogênese , Fenótipo , Tristetraprolina/genética
5.
FASEB J ; 37(8): e23100, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37462673

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that stimulates the proliferation and differentiation of granulocyte and macrophage precursors. The mouse gene-encoding GM-CSF, Csf2, is regulated at both transcriptional and post-transcriptional levels. An adenine-uridine-rich element (ARE) within the 3'-untranslated region of Csf2 mRNA was shown in cell transfection studies to confer instability on this transcript. To explore the physiological importance of this element in an intact animal, we generated mice with a knock-in deletion of the 75-nucleotide ARE. Mice heterozygous for this ARE deletion developed severe respiratory distress and death within about 12 weeks of age. There was dense infiltration of lung alveolar spaces by crystal-containing macrophages. Increased stability of Csf2 mRNA was confirmed in bone marrow-derived macrophages, and elevated GM-CSF levels were observed in serum and lung. These mice did not exhibit notable abnormalities in blood or bone marrow, and transplantation of bone marrow from mutant mice into lethally irradiated WT mice did not confer the pulmonary phenotype. Mice with a conditional deletion of the ARE restricted to lung type II alveolar cells exhibited an essentially identical lethal lung phenotype at the same ages as the mice with the whole-body deletion. In contrast, mice with the same conditional ARE deletion in myeloid cells, including macrophages, exhibited lesser degrees of macrophage infiltration into alveolar spaces much later in life, at approximately 9 months of age. Post-transcriptional Csf2 mRNA stability regulation in pulmonary alveolar epithelial cells appears to be essential for normal physiological GM-CSF secretion and pulmonary macrophage homeostasis.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Pneumonia , Animais , Camundongos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Pneumonia/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Am J Pathol ; 192(2): 208-225, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34774847

RESUMO

Zinc finger protein 36 like 1 (ZFP36L1) enhances the turnover of mRNAs containing AU-rich elements (AREs) in their 3'-untranslated regions (3'UTR). The physiological and pathological functions of ZFP36L1 in liver, however, remain largely unknown. Liver-specific ZFP36L1-deficient (Zfp36l1flox/flox/Cre+; L1LKO) mice were generated to investigate the role of ZFP36L1 in liver physiology and pathology. Under normal conditions, the L1LKO mice and their littermate controls (Zfp36l1flox/flox/Cre-; L1FLX) appeared normal. When fed a Lieber-DeCarli liquid diet containing alcohol, L1LKO mice were significantly protected from developing alcohol-induced hepatic steatosis, injury, and inflammation compared with L1FLX mice. Most importantly, fibroblast growth factor 21 (Fgf21) mRNA was significantly increased in the livers of alcohol diet-fed L1LKO mice compared with the alcohol diet-fed L1FLX group. The Fgf21 mRNA contains three AREs in its 3'UTR, and Fgf21 3'UTR was directly regulated by ZFP36L1 in luciferase reporter assays. Steady-state levels of Fgf21 mRNA were significantly decreased by wild-type ZFP36L1, but not by a non-binding zinc finger ZFP36L1 mutant. Finally, wild-type ZFP36L1, but not the ZFP36L1 mutant, bound to the Fgf21 3'UTR ARE RNA probe. These results demonstrate that ZFP36L1 inactivation protects against alcohol-induced hepatic steatosis and liver injury and inflammation, possibly by stabilizing Fgf21 mRNA. These findings suggest that the modulation of ZFP36L1 may be beneficial in the prevention or treatment of human alcoholic liver disease.


Assuntos
Regiões 3' não Traduzidas , Fator 1 de Resposta a Butirato/metabolismo , Fígado Gorduroso Alcoólico/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Estabilidade de RNA , Animais , Fator 1 de Resposta a Butirato/genética , Fígado Gorduroso Alcoólico/genética , Fígado Gorduroso Alcoólico/patologia , Fatores de Crescimento de Fibroblastos/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Fígado/patologia , Camundongos , Camundongos Knockout , Mutação
7.
Nucleic Acids Res ; 49(20): 11920-11937, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34718768

RESUMO

Post-transcriptional processes mediated by mRNA binding proteins represent important control points in gene expression. In eukaryotes, mRNAs containing specific AU-rich motifs are regulated by binding of tristetraprolin (TTP) family tandem zinc finger proteins, which promote mRNA deadenylation and decay, partly through interaction of a conserved C-terminal CNOT1 binding (CNB) domain with CCR4-NOT protein complexes. The social ameba Dictyostelium discoideum shared a common ancestor with humans more than a billion years ago, and expresses only one TTP family protein, TtpA, in contrast to three members expressed in humans. Evaluation of ttpA null-mutants identified six transcripts that were consistently upregulated compared to WT during growth and early development. The 3'-untranslated regions (3'-UTRs) of all six 'TtpA-target' mRNAs contained multiple TTP binding motifs (UUAUUUAUU), and one 3'-UTR conferred TtpA post-transcriptional stability regulation to a heterologous mRNA that was abrogated by mutations in the core TTP-binding motifs. All six target transcripts were upregulated to similar extents in a C-terminal truncation mutant, in contrast to less severe effects of analogous mutants in mice. All six target transcripts encoded probable membrane proteins. In Dictyostelium, TtpA may control an 'RNA regulon', where a single RNA binding protein, TtpA, post-transcriptionally co-regulates expression of several functionally related proteins.


Assuntos
Dictyostelium/genética , Proteínas de Protozoários/metabolismo , Regulon , Tristetraprolina/metabolismo , Regiões 3' não Traduzidas , Dictyostelium/metabolismo , Mutação , Proteínas de Protozoários/genética , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tristetraprolina/genética
8.
Trends Biochem Sci ; 42(4): 285-296, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28096055

RESUMO

RNA-binding proteins are important modulators of mRNA stability, a crucial process that determines the ultimate cellular levels of mRNAs and their encoded proteins. The tristetraprolin (TTP) family of RNA-binding proteins appeared early in the evolution of eukaryotes, and has persisted in modern eukaryotes. The domain structures and biochemical functions of family members from widely divergent lineages are remarkably similar, but their mRNA 'targets' can be very different, even in closely related species. Recent gene knockout studies in species as distantly related as plants, flies, yeasts, and mice have demonstrated crucial roles for these proteins in a wide variety of physiological processes. Inflammatory and hematopoietic phenotypes in mice have suggested potential therapeutic approaches for analogous human disorders.


Assuntos
Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Animais , Humanos
9.
J Biol Chem ; 295(14): 4661-4672, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094226

RESUMO

The necrosome is a protein complex required for signaling in cells that results in necroptosis, which is also dependent on tumor necrosis factor receptor (TNF-R) signaling. TNFα promotes necroptosis, and its expression is facilitated by mitogen-activated protein (MAP) kinase-activated protein kinase 2 (MK2) but is inhibited by the RNA-binding protein tristetraprolin (TTP, encoded by the Zfp36 gene). We have stimulated murine macrophages from WT, MyD88-/-, Trif-/-, MyD88-/-Trif-/-, MK2-/-, and Zfp36-/- mice with graded doses of lipopolysaccharide (LPS) and various inhibitors to evaluate the role of various genes in Toll-like receptor 4 (TLR4)-induced necroptosis. Necrosome signaling, cytokine production, and cell death were evaluated by immunoblotting, ELISA, and cell death assays, respectively. We observed that during TLR4 signaling, necrosome activation is mediated through the adaptor proteins MyD88 and TRIF, and this is inhibited by MK2. In the absence of MK2-mediated necrosome activation, lipopolysaccharide-induced TNFα expression was drastically reduced, but MK2-deficient cells became highly sensitive to necroptosis even at low TNFα levels. In contrast, during tonic TLR4 signaling, WT cells did not undergo necroptosis, even when MK2 was disabled. Of note, necroptosis occurred only in the absence of TTP and was mediated by the expression of TNFα and activation of JUN N-terminal kinase (JNK). These results reveal that TTP plays an important role in inhibiting TNFα/JNK-induced necrosome signaling and resultant cytotoxicity.


Assuntos
Necroptose , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Tristetraprolina/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Caspase 8/química , Caspase 8/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Necroptose/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tristetraprolina/deficiência , Tristetraprolina/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(27): E6291-E6300, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915044

RESUMO

Cells respond to iron deficiency by activating iron-regulatory proteins to increase cellular iron uptake and availability. However, it is not clear how cells adapt to conditions when cellular iron uptake does not fully match iron demand. Here, we show that the mRNA-binding protein tristetraprolin (TTP) is induced by iron deficiency and degrades mRNAs of mitochondrial Fe/S-cluster-containing proteins, specifically Ndufs1 in complex I and Uqcrfs1 in complex III, to match the decrease in Fe/S-cluster availability. In the absence of TTP, Uqcrfs1 levels are not decreased in iron deficiency, resulting in nonfunctional complex III, electron leakage, and oxidative damage. Mice with deletion of Ttp display cardiac dysfunction with iron deficiency, demonstrating that TTP is necessary for maintaining cardiac function in the setting of low cellular iron. Altogether, our results describe a pathway that is activated in iron deficiency to regulate mitochondrial function to match the availability of Fe/S clusters.


Assuntos
Deficiências de Ferro , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , NADH Desidrogenase/metabolismo , Tristetraprolina/metabolismo , Animais , Linhagem Celular , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Ferro-Enxofre/genética , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/enzimologia , NADH Desidrogenase/genética , Oxirredução , Tristetraprolina/genética
11.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34502288

RESUMO

Thyroid hormone levels are usually genetically determined. Thyrocytes produce a unique set of enzymes that are dedicated to thyroid hormone synthesis. While thyroid transcriptional regulation is well-characterized, post-transcriptional mechanisms have been less investigated. Here, we describe the involvement of ZFP36L2, a protein that stimulates degradation of target mRNAs, in thyroid development and function, by in vivo and in vitro gene targeting in thyrocytes. Thyroid-specific Zfp36l2-/- females were hypothyroid, with reduced levels of circulating free Thyroxine (cfT4) and Triiodothyronine (cfT3). Their hypothyroidism was due to dyshormonogenesis, already evident one week after weaning, while thyroid development appeared normal. We observed decreases in several thyroid-specific transcripts and proteins, such as Nis and its transcriptional regulators (Pax8 and Nkx2.1), and increased apoptosis in Zfp36l2-/- thyroids. Nis, Pax8, and Nkx2.1 mRNAs were also reduced in Zfp36l2 knock-out thyrocytes in vitro (L2KO), in which we confirmed the increased apoptosis. Finally, in L2KO cells, we showed an altered response to TSH stimulation regarding both thyroid-specific gene expression and cell proliferation and survival. This result was supported by increases in P21/WAF1 and p-P38MAPK levels. Mechanistically, we confirmed Notch1 as a target of ZFP36L2 in the thyroid since its levels were increased in both in vitro and in vivo models. In both models, the levels of Id4 mRNA, a potential inhibitor of Pax8 activity, were increased. Overall, the data indicate that the regulation of mRNA stability by ZFP36L2 is a mechanism that controls the function and survival of thyrocytes.


Assuntos
Glândula Tireoide/fisiologia , Tristetraprolina/fisiologia , Animais , Apoptose/fisiologia , Linhagem Celular , Sobrevivência Celular , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fator de Transcrição PAX8/genética , Ratos , Receptor Notch1/metabolismo , Glândula Tireoide/citologia , Glândula Tireoide/efeitos dos fármacos , Tireotropina/farmacologia , Tristetraprolina/genética
12.
Methods ; 155: 77-87, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30625384

RESUMO

Decay of transcribed mRNA is a key determinant of steady state mRNA levels in cells. Global analysis of mRNA decay in cultured cells has revealed amazing heterogeneity in rates of decay under normal growth conditions, with calculated half-lives ranging from several minutes to many days. The factors that are responsible for this wide range of decay rates are largely unknown, although our knowledge of trans-acting RNA binding proteins and non-coding RNAs that can control decay rates is increasing. Many methods have been used to try to determine mRNA decay rates under various experimental conditions in cultured cells, and transcription inhibitors like actinomycin D have probably the longest history of any technique for this purpose. Despite this long history of use, the actinomycin D method has been criticized as prone to artifacts, and as ineffective for some promoters. With appropriate guidelines and controls, however, it can be a versatile, effective technique for measuring endogenous mRNA decay in cultured mammalian and insect cells, as well as the decay of exogenously-expressed transcripts. It can be used readily on a genome-wide level, and is remarkably cost-effective. In this short review, we will discuss our utilization of this approach in these cells; we hope that these methods will allow more investigators to apply this useful technique to study mRNA decay under the appropriate conditions.


Assuntos
Dactinomicina/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , Transcrição Gênica/efeitos dos fármacos , Animais , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Cultura Primária de Células , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/biossíntese , Análise de Sequência de RNA , Tristetraprolina/genética , Tristetraprolina/metabolismo
13.
Development ; 143(8): 1424-33, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26952984

RESUMO

The ZFP36L3 protein is a rodent-specific, placenta- and yolk sac-specific member of the tristetraprolin (TTP) family of CCCH tandem zinc finger proteins. These proteins bind to AU-rich elements in target mRNAs, and promote their deadenylation and decay. We addressed the hypotheses that the absence of ZFP36L3 would result in the accumulation of target transcripts in placenta and/or yolk sac, and that some of these would be important for female reproductive physiology and overall fecundity. Mice deficient in ZFP36L3 exhibited decreased neonatal survival rates, but no apparent morphological changes in the placenta or surviving offspring. We found Zfp36l3 to be paternally imprinted, with profound parent-of-origin effects on gene expression. The protein was highly expressed in the syncytiotrophoblast cells of the labyrinth layer of the placenta, and the epithelial cells of the yolk sac. RNA-Seq of placental mRNA from Zfp36l3 knockout (KO) mice revealed many significantly upregulated transcripts, whereas there were few changes in KO yolk sacs. Many of the upregulated placental transcripts exhibited decreased decay rates in differentiated trophoblast stem cells derived from KO blastocysts. Several dozen transcripts were deemed high probability targets of ZFP36L3; these include proteins known to be involved in trophoblast and placenta physiology. Type 1 transferrin receptor mRNA was unexpectedly decreased in KO placentas, despite an increase in its stability in KO stem cells. This receptor is crucial for placental iron uptake, and its decrease was accompanied by decreased iron stores in the KO fetus, suggesting that this intrauterine deficiency might have deleterious consequences in later life.


Assuntos
Ferro/metabolismo , Placenta/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Tristetraprolina/genética , Saco Vitelino/metabolismo , Animais , Desenvolvimento Embrionário , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Proteínas de Ligação a RNA/metabolismo , Células-Tronco/metabolismo , Tristetraprolina/deficiência , Tristetraprolina/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo
14.
Proc Natl Acad Sci U S A ; 113(7): 1865-70, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26831084

RESUMO

Tristetraprolin (TTP) is an inducible, tandem zinc-finger mRNA binding protein that binds to adenylate-uridylate-rich elements (AREs) in the 3'-untranslated regions (3'UTRs) of specific mRNAs, such as that encoding TNF, and increases their rates of deadenylation and turnover. Stabilization of Tnf mRNA and other cytokine transcripts in TTP-deficient mice results in the development of a profound, chronic inflammatory syndrome characterized by polyarticular arthritis, dermatitis, myeloid hyperplasia, and autoimmunity. To address the hypothesis that increasing endogenous levels of TTP in an intact animal might be beneficial in the treatment of inflammatory diseases, we generated a mouse model (TTPΔARE) in which a 136-base instability motif in the 3'UTR of TTP mRNA was deleted in the endogenous genetic locus. These mice appeared normal, but cultured fibroblasts and macrophages derived from them exhibited increased stability of the otherwise highly labile TTP mRNA. This resulted in increased TTP protein expression in LPS-stimulated macrophages and increased levels of TTP protein in mouse tissues. TTPΔARE mice were protected from collagen antibody-induced arthritis, exhibited significantly reduced inflammation in imiquimod-induced dermatitis, and were resistant to induction of experimental autoimmune encephalomyelitis, presumably by dampening the excessive production of proinflammatory mediators in all cases. These data suggest that increased systemic levels of TTP, secondary to increased stability of its mRNA throughout the body, can be protective against inflammatory disease in certain models and might be viewed as an attractive therapeutic target for the treatment of human inflammatory diseases.


Assuntos
Inflamação/genética , RNA Mensageiro/genética , Tristetraprolina/genética , Aminoquinolinas/efeitos adversos , Animais , Artrite Experimental/genética , Células Cultivadas , Colágeno/imunologia , Dermatite/etiologia , Dermatite/genética , Encefalomielite Autoimune Experimental/genética , Imiquimode , Camundongos , Camundongos Transgênicos , Mutação , Tristetraprolina/metabolismo
15.
Am J Physiol Endocrinol Metab ; 315(4): E676-E693, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29509432

RESUMO

Obesity is associated with adipose tissue inflammation that contributes to insulin resistance. Zinc finger protein 36 (Zfp36) is an mRNA-binding protein that reduces inflammation by binding to cytokine transcripts and promoting their degradation. We hypothesized that myeloid-specific deficiency of Zfp36 would lead to increased adipose tissue inflammation and reduced insulin sensitivity in diet-induced obese mice. As expected, wild-type (Control) mice became obese and diabetic on a high-fat diet, and obese mice with myeloid-specific loss of Zfp36 [knockout (KO)] demonstrated increased adipose tissue and liver cytokine mRNA expression compared with Control mice. Unexpectedly, in glucose tolerance testing and hyperinsulinemic-euglycemic clamp studies, myeloid Zfp36 KO mice demonstrated improved insulin sensitivity compared with Control mice. Obese KO and Control mice had similar macrophage infiltration of the adipose depots and similar peripheral cytokine levels, but lean and obese KO mice demonstrated increased Kupffer cell (KC; the hepatic macrophage)-expressed Mac2 compared with lean Control mice. Insulin resistance in obese Control mice was associated with enhanced Zfp36 expression in KCs. Compared with Control mice, KO mice demonstrated increased hepatic mRNA expression of a multitude of classical (M1) inflammatory cytokines/chemokines, and this M1-inflammatory hepatic milieu was associated with enhanced nuclear localization of IKKß and the p65 subunit of NF-κB. Our data confirm the important role of innate immune cells in regulating hepatic insulin sensitivity and lipid metabolism, challenge-prevailing models in which M1 inflammatory responses predict insulin resistance, and indicate that myeloid-expressed Zfp36 modulates the response to insulin in mice.


Assuntos
Tecido Adiposo/metabolismo , Citocinas/genética , Fígado Gorduroso/genética , Inflamação/genética , Resistência à Insulina/genética , Obesidade/genética , Tristetraprolina/genética , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Animais , Citocinas/imunologia , Citocinas/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo , Dieta Hiperlipídica , Fígado Gorduroso/imunologia , Fígado Gorduroso/metabolismo , Quinase I-kappa B/imunologia , Quinase I-kappa B/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/metabolismo , Obesidade/imunologia , Obesidade/metabolismo , Tamanho do Órgão , RNA Mensageiro/metabolismo , Fator de Transcrição RelA/imunologia , Fator de Transcrição RelA/metabolismo , Tristetraprolina/imunologia , Tristetraprolina/metabolismo
16.
Blood ; 127(11): 1468-80, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26744461

RESUMO

Platelets are essential for hemostasis, and thrombocytopenia is a major clinical problem. Megakaryocytes (MKs) generate platelets by extending long processes, proplatelets, into sinusoidal blood vessels. However, very little is known about what regulates proplatelet formation. To uncover which proteins were dynamically changing during this process, we compared the proteome and transcriptome of round vs proplatelet-producing MKs by 2D difference gel electrophoresis (DIGE) and polysome profiling, respectively. Our data revealed a significant increase in a poorly-characterized MK protein, myristoylated alanine-rich C-kinase substrate (MARCKS), which was upregulated 3.4- and 5.7-fold in proplatelet-producing MKs in 2D DIGE and polysome profiling analyses, respectively. MARCKS is a protein kinase C (PKC) substrate that binds PIP2. In MKs, it localized to both the plasma and demarcation membranes. MARCKS inhibition by peptide significantly decreased proplatelet formation 53%. To examine the role of MARCKS in the PKC pathway, we treated MKs with polymethacrylate (PMA), which markedly increased MARCKS phosphorylation while significantly inhibiting proplatelet formation 84%, suggesting that MARCKS phosphorylation reduces proplatelet formation. We hypothesized that MARCKS phosphorylation promotes Arp2/3 phosphorylation, which subsequently downregulates proplatelet formation; both MARCKS and Arp2 were dephosphorylated in MKs making proplatelets, and Arp2 inhibition enhanced proplatelet formation. Finally, we used MARCKS knockout (KO) mice to probe the direct role of MARCKS in proplatelet formation; MARCKS KO MKs displayed significantly decreased proplatelet levels. MARCKS expression and signaling in primary MKs is a novel finding. We propose that MARCKS acts as a "molecular switch," binding to and regulating PIP2 signaling to regulate processes like proplatelet extension (microtubule-driven) vs proplatelet branching (Arp2/3 and actin polymerization-driven).


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Megacariócitos/metabolismo , Proteínas de Membrana/fisiologia , Processamento de Proteína Pós-Traducional , Trombopoese/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Sequência de Aminoácidos , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Angiopoietinas/metabolismo , Animais , Apoptose , Plaquetas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Fígado/citologia , Fígado/embriologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Substrato Quinase C Rico em Alanina Miristoilada , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosforilação , Biossíntese de Proteínas , Proteína Quinase C/metabolismo , Transdução de Sinais
17.
Nucleic Acids Res ; 44(15): 7418-40, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27220464

RESUMO

RNA-binding proteins (RBPs) facilitate post-transcriptional control of eukaryotic gene expression at multiple levels. The RBP tristetraprolin (TTP/Zfp36) is a signal-induced phosphorylated anti-inflammatory protein guiding unstable mRNAs of pro-inflammatory proteins for degradation and preventing translation. Using iCLIP, we have identified numerous mRNA targets bound by wild-type TTP and by a non-MK2-phosphorylatable TTP mutant (TTP-AA) in 1 h LPS-stimulated macrophages and correlated their interaction with TTP to changes at the level of mRNA abundance and translation in a transcriptome-wide manner. The close similarity of the transcriptomes of TTP-deficient and TTP-expressing macrophages upon short LPS stimulation suggested an effective inactivation of TTP by MK2, whereas retained RNA-binding capacity of TTP-AA to 3'UTRs caused profound changes in the transcriptome and translatome, altered NF-κB-activation and induced cell death. Increased TTP binding to the 3'UTR of feedback inhibitor mRNAs, such as Ier3, Dusp1 or Tnfaip3, in the absence of MK2-dependent TTP neutralization resulted in a strong reduction of their protein synthesis contributing to the deregulation of the NF-κB-signaling pathway. Taken together, our study uncovers a role of TTP as a suppressor of feedback inhibitors of inflammation and highlights the importance of fine-tuned TTP activity-regulation by MK2 in order to control the pro-inflammatory response.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Inflamação/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Células da Medula Óssea/metabolismo , Sobrevivência Celular , Reagentes de Ligações Cruzadas , Citocinas/genética , Ensaios de Triagem em Larga Escala , Humanos , Imunoprecipitação , Inflamação/genética , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade por Substrato , Transcriptoma
18.
J Biol Chem ; 290(40): 24413-23, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26292216

RESUMO

Members of the tristetraprolin (TTP) family of proteins participate in the regulation of mRNA turnover after initially binding to AU-rich elements in target mRNAs. Related proteins from most groups of eukaryotes contain a conserved tandem zinc finger (TZF) domain consisting of two closely spaced, similar CCCH zinc fingers that form the primary RNA binding domain. There is considerable sequence variation within the TZF domains from different family members within a single organism and from different organisms, raising questions about sequence-specific effects on RNA binding and decay promotion. We hypothesized that TZF domains from evolutionarily distant species are functionally interchangeable. The single family member expressed in the fission yeast Schizosaccharomyces pombe, Zfs1, promotes the turnover of several dozen transcripts, some of which are involved in cell-cell interactions. Using knockin techniques, we replaced the TZF domain of S. pombe Zfs1 with the equivalent domains from human TTP and the single family member proteins expressed in the silkworm Bombyx mori, the pathogenic yeast Candida guilliermondii, and the plant Chromolaena odorata. We found that the TZF domains from these widely disparate species could completely substitute for the native S. pombe TZF domain, as determined by measurement of target transcript levels and the flocculation phenotype characteristic of Zfs1 deletion. Recombinant TZF domain peptides from several of these species bound to an AU-rich RNA oligonucleotide with comparably high affinity. We conclude that the TZF domains from TTP family members in these evolutionarily widely divergent species are functionally interchangeable in mRNA binding and decay.


Assuntos
Proteínas Nucleares/química , RNA/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Sequência de Aminoácidos , Animais , Anisotropia , Evolução Molecular , Deleção de Genes , Técnicas de Introdução de Genes , Teste de Complementação Genética , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Tristetraprolina/química , Dedos de Zinco
19.
Mol Microbiol ; 95(6): 1036-53, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25524641

RESUMO

Members of the tristetraprolin (TTP) family of CCCH tandem zinc finger proteins bind to AU-rich regions in target mRNAs, leading to their deadenylation and decay. Family members in Saccharomyces cerevisiae influence iron metabolism, whereas the single protein expressed in Schizosaccharomyces pombe, Zfs1, regulates cell-cell interactions. In the human pathogen Candida albicans, deep sequencing of mutants lacking the orthologous protein, Zfs1, revealed significant increases (> 1.5-fold) in 156 transcripts. Of these, 113 (72%) contained at least one predicted TTP family member binding site in their 3'UTR, compared with only 3 of 56 (5%) down-regulated transcripts. The zfs1Δ/Δ mutant was resistant to 3-amino-1,2,4-triazole, perhaps because of increased expression of the potential target transcript encoded by HIS3. Sequences of the proteins encoded by the putative Zfs1 targets were highly conserved among other species within the fungal CTG clade, while the predicted Zfs1 binding sites in these mRNAs often 'disappeared' with increasing evolutionary distance from the parental species. C. albicans Zfs1 bound to the ideal mammalian TTP binding site with high affinity, and Zfs1 was associated with target transcripts after co-immunoprecipitation. Thus, the biochemical activities of these proteins in fungi are highly conserved, but Zfs1-like proteins may target different transcripts in each species.


Assuntos
Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Processamento Pós-Transcricional do RNA , Tristetraprolina/genética , Tristetraprolina/metabolismo , Regiões 3' não Traduzidas , Sequência de Aminoácidos , Sítios de Ligação , Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Sequência Conservada , Regulação para Baixo/genética , Proteínas Fúngicas/química , Sequenciamento de Nucleotídeos em Larga Escala , Imunoprecipitação , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Estrutura Terciária de Proteína , Estabilidade de RNA , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alinhamento de Sequência , Tristetraprolina/química , Regulação para Cima
20.
Mol Phylogenet Evol ; 94(Pt B): 518-530, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26493225

RESUMO

In most mammals, the Zfp36 gene family consists of three conserved members, with a fourth member, Zfp36l3, present only in rodents. The ZFP36 proteins regulate post-transcriptional gene expression at the level of mRNA stability in organisms from humans to yeasts, and appear to be expressed in all major groups of eukaryotes. In Mus musculus, Zfp36l3 expression is limited to the placenta and yolk sac, and is important for overall fecundity. We sequenced the Zfp36l3 gene from more than 20 representative species, from members of the Muridae, Cricetidae and Nesomyidae families. Zfp36l3 was not present in Dipodidae, or any families that branched earlier, indicating that this gene is exclusive to the Muroidea superfamily. We provide evidence that Zfp36l3 arose by retrotransposition of an mRNA encoded by a related gene, Zfp36l2 into an ancestral rodent X chromosome. Zfp36l3 has evolved rapidly since its origin, and numerous modifications have developed, including variations in start codon utilization, de novo intron formation by mechanisms including a nested retrotransposition, and the insertion of distinct repetitive regions. One of these repeat regions, a long alanine rich-sequence, is responsible for the full-time cytoplasmic localization of Mus musculus ZFP36L3. In contrast, this repeat sequence is lacking in Peromyscus maniculatus ZFP36L3, and this protein contains a novel nuclear export sequence that controls shuttling between the nucleus and cytosol. Zfp36l3 is an example of a recently acquired, rapidly evolving gene, and its various orthologues illustrate several different mechanisms by which new genes emerge and evolve.


Assuntos
Evolução Molecular , Roedores/genética , Tristetraprolina/genética , Animais , Núcleo Celular/genética , Feminino , Humanos , Íntrons , Muridae/genética , Peromyscus/genética , Filogenia , Placenta/metabolismo , Gravidez , Proteínas/genética , RNA Mensageiro , Sequências Repetitivas de Ácido Nucleico , Retroelementos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA