Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107316, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663826

RESUMO

Neuraminidases (NEUs) also called sialidases are glycosidases which catalyze the removal of terminal sialic acid residues from glycoproteins, glycolipids, and oligosaccharides. Mammalian NEU-1 participates in regulation of cell surface receptors such as insulin receptor (IR), epithelial growth factor receptor, low-density lipoprotein receptor, and toll-like receptor 4. At the plasma membrane, NEU-1 can be associated with the elastin-binding protein and the carboxypeptidase protective protein/cathepsin A to constitute the elastin receptor complex. In this complex, NEU-1 is essential for elastogenesis, signal transduction through this receptor and for biological effects of the elastin-derived peptides on atherosclerosis, thrombosis, insulin resistance, nonalcoholic steatohepatitis, and cancers. This is why research teams are developing inhibitors targeting this sialidase. Previously, we developed interfering peptides to inhibit the dimerization and the activation of NEU-1. In this study, we investigated the effects of these peptides on IR activation in vitro and in vivo. Using cellular overexpression and endogenous expression models of NEU-1 and IR (COS-7 and HepG2 cells, respectively), we have shown that interfering peptides inhibit NEU-1 dimerization and sialidase activity which results in a reduction of IR phosphorylation. These results demonstrated that NEU-1 positively regulates IR phosphorylation and activation in our conditions. In vivo, biodistribution study showed that interfering peptides are well distributed in mice. Treatment of C57Bl/6 mice during 8 weeks with interfering peptides induces a hyperglycemic effect in our experimental conditions. Altogether, we report here that inhibition of NEU-1 sialidase activity by interfering peptides decreases IR activity in vitro and glucose homeostasis in vivo.


Assuntos
Neuraminidase , Receptor de Insulina , Neuraminidase/metabolismo , Neuraminidase/antagonistas & inibidores , Animais , Receptor de Insulina/metabolismo , Humanos , Camundongos , Células Hep G2 , Chlorocebus aethiops , Homeostase/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Masculino , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Superfície Celular
2.
Artigo em Inglês | MEDLINE | ID: mdl-38946422

RESUMO

Type 2 diabetes (T2D) constitutes a major public health problem, and despite prevention efforts, this pandemic disease is 'one of the deadliest diseases in the world. In 2022, 6.7 million T2D patients died prematurely from vascular complications. Indeed, diabetes increases the risk of myocardial infarction or stroke eightfold. The identification of the molecular actors involved in the occurrence of cardiovascular complications and their prevention are therefore major axes. Our hypothesis is that factors brought into play during physiological aging appear prematurely with diabetes progression. Our study focused on the aging of the extracellular matrix (ECM), a major element in the maintenance of vascular homeostasis. We characterized the morphological and functional aspects of aorta, with a focus on the collagen and elastic fibers of diabetic mice aged from 6 months to non-diabetic mice aged 6 months and 20 months. The comparison with the two non-diabetic models (young and old) highlighted an exacerbated activity of proteases, which could explain a disturbance in the collagen accumulation and an excessive degradation of elastic fibers. Moreover, the generation of circulating elastin-derived peptides reflects premature aging of the ECM. These extracellular elements contribute to the appearance of vascular rigidity, often the origin of pathologies such as hypertension and atherosclerosis. In conclusion, we show that diabetic mice aged 6 months present the same characteristics of ECM wear as those observed in mice aged 20 months. This accelerated aortic wall remodeling could then explain the early onset of cardiovascular diseases and, therefore, the premature death of DT2 patients.

3.
FASEB J ; 35(10): e21844, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34473371

RESUMO

The arterial wall consists of three concentric layers: intima, media, and adventitia. Beyond their resident cells, these layers are characterized by an extracellular matrix (ECM), which provides both biochemical and mechanical support. Elastin, the major component of arterial ECM, is present in the medial layer and organized in concentric elastic lamellae that confer resilience to the wall. We explored the arterial wall structures from C57Bl6 (control), db/db (diabetic), and ApoE-/- (atherogenic) mice aged 3 months using synchrotron X-ray computed microtomography on fixed and unstained tissues with a large image field (8 mm3 ). This approach combined a good resolution (0.83 µm/voxel), large 3D imaging field. and an excellent signal to noise ratio conferred by phase-contrast imaging. We determined from 2D virtual slices that the thickness of intramural ECM structures was comparable between strains but automated image analysis of the 3D arterial volumes revealed a lattice-like network within concentric elastic lamellae. We hypothesize that this network could play a role in arterial mechanics. This work demonstrates that phase-contrast synchrotron X-ray computed microtomography is a powerful technique which to characterize unstained soft tissues.


Assuntos
Aorta/citologia , Aterosclerose/patologia , Diabetes Mellitus Experimental/patologia , Imageamento Tridimensional/métodos , Estresse Mecânico , Microtomografia por Raio-X/métodos , Animais , Elasticidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE
5.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328674

RESUMO

Diabetes is a major concern of our society as it affects one person out of 11 around the world. Elastic fiber alterations due to diabetes increase the stiffness of large arteries, but the structural effects of these alterations are poorly known. To address this issue, we used synchrotron X-ray microcomputed tomography with in-line phase contrast to image in three dimensions C57Bl6J (control) and db/db (diabetic) mice with a resolution of 650 nm/voxel and a field size of 1.3 mm3. Having previously shown in younger WT and db/db mouse cohorts that elastic lamellae contain an internal supporting lattice, here we show that in older db/db mice the elastic lamellae lose this scaffold. We coupled this label-free method with automated image analysis to demonstrate that the elastic lamellae from the arterial wall are structurally altered and become 11% smoother (286,665 measurements). This alteration suggests a link between the loss of the 3D lattice-like network and the waviness of the elastic lamellae. Therefore, waviness measurement appears to be a measurable elasticity indicator and the 3D lattice-like network appears to be at the origin of the existence of this waviness. Both could be suitable indicators of the overall elasticity of the aorta.


Assuntos
Diabetes Mellitus , Síncrotrons , Idoso , Animais , Aorta/diagnóstico por imagem , Tecido Elástico , Elasticidade , Humanos , Camundongos , Microtomografia por Raio-X
6.
J Cardiovasc Pharmacol ; 77(5): 660-672, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33760798

RESUMO

ABSTRACT: Desialylation, governed by sialidases or neuraminidases, is strongly implicated in a wide range of human disorders, and accumulative data show that inhibition of neuraminidases, such as neuraminidases 1 sialidase, may be useful for managing atherosclerosis. Several studies have reported promising effects of oseltamivir phosphate, a widely used anti-influenza sialidase inhibitor, on human cancer cells, inflammation, and insulin resistance. In this study, we evaluated the effects of oseltamivir phosphate on atherosclerosis and thrombosis and potential liver toxicity in LDLR-/- mice fed with high-fat diet. Our results showed that oseltamivir phosphate significantly decreased plasma levels of LDL cholesterol and elastin fragmentation in aorta. However, no effect was observed on both atherosclerotic plaque size in aortic roots and chemically induced thrombosis in carotid arteries. Importantly, oseltamivir phosphate administration had adverse effects on the liver of mice and significantly increased messenger RNA expression levels of F4/80, interleukin-1ß, transforming growth factor-ß1, matrix metalloproteinase-12, and collagen. Taken together, our findings suggest that oseltamivir phosphate has limited benefits on atherosclerosis and carotid thrombosis and may lead to adverse side effects on the liver with increased inflammation and fibrosis.


Assuntos
Antivirais/toxicidade , Doenças da Aorta/tratamento farmacológico , Aterosclerose/tratamento farmacológico , Trombose das Artérias Carótidas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fígado/efeitos dos fármacos , Oseltamivir/toxicidade , Receptores de LDL/deficiência , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Trombose das Artérias Carótidas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos Knockout , Placa Aterosclerótica , Receptores de LDL/genética , Medição de Risco
7.
Methods ; 173: 94-104, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31302178

RESUMO

N-glycosylation is a post-translational modification heavily impacting protein functions. Some alterations of glycosylation, such as sialic acid hydrolysis, are related to protein dysfunction. Because of their high flexibility and the many reactive groups of the glycan chains, studying glycans with in vitro methods is a challenging task. Molecular dynamics is a useful tool and probably the only one in biology able to overcome this problem and gives access to conformational information through exhaustive sampling. To better decipher the impact of N-glycans, the analysis and visualization of their influence over time on protein structure is a prerequisite. We developed the Umbrella Visualization, a graphical method that assigns the glycan intrinsic flexibility during a molecular dynamics trajectory. The density plot generated by this method brought relevant informations regarding glycans dynamics and flexibility, but needs further development in order to integrate an accurate description of the protein topology and its interactions. We propose here to transform this analysis method into a visualization mode in UnityMol. UnityMol is a molecular editor, viewer and prototyping platform, coded in C#. The new representation of glycan chains presented in this study takes into account both the main positions adopted by each antenna of a glycan and their statistical relevance. By displaying the collected data on the protein surface, one is then able to investigate the protein/glycan interactions.


Assuntos
Biologia Computacional/métodos , Simulação de Dinâmica Molecular , Polissacarídeos/ultraestrutura , Processamento de Proteína Pós-Traducional/genética , Glicosilação , Conformação Molecular , Polissacarídeos/química
8.
Cell Mol Life Sci ; 76(4): 791-807, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30498996

RESUMO

In addition to its critical role in lysosomes for catabolism of sialoglycoconjugates, NEU1 is expressed at the plasma membrane and regulates a myriad of receptors by desialylation, playing a key role in many pathophysiological processes. Here, we developed a proteomic approach dedicated to the purification and identification by LC-MS/MS of plasma membrane NEU1 interaction partners in human macrophages. Already known interaction partners were identified as well as several new candidates such as the class B scavenger receptor CD36. Interaction between NEU1 and CD36 was confirmed by complementary approaches. We showed that elastin-derived peptides (EDP) desialylate CD36 and that this effect was blocked by the V14 peptide, which blocks the interaction between bioactive EDP and the elastin receptor complex (ERC). Importantly, EDP also increased the uptake of oxidized LDL by macrophages that is blocked by both the V14 peptide and the sialidase inhibitor 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA). These results demonstrate, for the first time, that binding of EDP to the ERC indirectly modulates CD36 sialylation level and regulates oxidized LDL uptake through this sialidase. These effects could contribute to the previously reported proatherogenic role of EDP and add a new dimension in the regulation of biological processes through NEU1.


Assuntos
Aterosclerose , Antígenos CD36/metabolismo , Neuraminidase/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Antígenos CD36/genética , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Elastina/química , Humanos , Lipoproteínas LDL/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacologia , Neuraminidase/genética , Peptídeos/metabolismo , Peptídeos/farmacologia , Ligação Proteica , Proteômica/métodos , Interferência de RNA , Células THP-1
9.
Arterioscler Thromb Vasc Biol ; 34(12): 2570-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25341794

RESUMO

OBJECTIVE: Elastin is the major structural extracellular matrix component of the arterial wall that provides the elastic recoil properties and resilience essential for proper vascular function. Elastin-derived peptides (EDP) originating from elastin fragmentation during vascular remodeling have been shown to play an important role in cell physiology and development of cardiovascular diseases. However, their involvement in thrombosis has been unexplored to date. In this study, we investigated the effects of EDP on (1) platelet aggregation and related signaling and (2) thrombus formation. We also characterized the mechanism by which EDP regulate thrombosis. APPROACH AND RESULTS: We show that EDP, derived from organo-alkaline hydrolysate of bovine insoluble elastin (kappa-elastin), decrease human platelet aggregation in whole blood induced by weak and strong agonists, such as ADP, epinephrine, arachidonic acid, collagen, TRAP, and U46619. In a mouse whole blood perfusion assay over a collagen matrix, kappa-elastin and VGVAPG, the canonical peptide recognizing the elastin receptor complex, significantly decrease thrombus formation under arterial shear conditions. We confirmed these results in vivo by demonstrating that both kappa-elastin and VGVAPG significantly prolonged the time for complete arteriole occlusion in a mouse model of thrombosis and increased tail bleeding times. Finally, we demonstrate that the regulatory role of EDP on thrombosis relies on platelets that express a functional elastin receptor complex and on the ability of EDP to disrupt plasma von Willebrand factor interaction with collagen. CONCLUSIONS: These results highlight the complex nature of the mechanisms governing thrombus formation and reveal an unsuspected regulatory role for circulating EDP in thrombosis.


Assuntos
Elastina/fisiologia , Trombose/etiologia , Animais , Plaquetas/fisiologia , Catepsina A/sangue , Bovinos , Colágeno/sangue , Elastina/sangue , Elastina/química , Humanos , Camundongos , Neuraminidase/sangue , Oligopeptídeos/sangue , Oligopeptídeos/química , Oligopeptídeos/fisiologia , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/fisiologia , Agregação Plaquetária/fisiologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Proteólise , Receptores de Superfície Celular/sangue , Transdução de Sinais , Trombose/sangue , Remodelação Vascular/fisiologia , Fator de von Willebrand/metabolismo
10.
J Biol Chem ; 288(2): 1317-28, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23166321

RESUMO

The elastin binding protein (EBP), a spliced variant of lysosomal ß-galactosidase, is the primary receptor of elastin peptides that have been linked to emphysema, aneurysm and cancer progression. The sequences recognized by EBP share the XGXXPG consensus pattern found in numerous matrix proteins, notably in elastin where the VGVAPG motif is repeated. To delineate the elastin binding site of human EBP, we built a homology model of this protein and docked VGVAPG on its surface. Analysis of this model suggested that Gln-97 and Asp-98 were required for interaction with VGVAPG because they contribute to the definition of a pocket thought to represent the elastin binding site of EBP. Additionally, we proposed that Leu-103, Arg-107, and Glu-137 were essential residues because they could interact with VGVAPG itself. Site-directed mutagenesis experiments at these key positions validated our model. This work therefore provides the first structural data concerning the interaction of the VGVAPG with its cognate receptor. The present structural data should now allow the development of EBP-specific antagonists.


Assuntos
Elastina/metabolismo , Oligopeptídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Células COS , Chlorocebus aethiops , Primers do DNA , Elastina/química , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética
11.
J Physiol Biochem ; 80(2): 363-379, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38393636

RESUMO

The insulin receptor (IR) plays an important role in insulin signal transduction, the defect of which is believed to be the root cause of type 2 diabetes. In 3T3-L1 adipocytes as in other cell types, the mature IR is a heterotetrameric cell surface glycoprotein composed of two α subunits and two ß subunits. Our objective in our study, is to understand how the desialylation of N-glycan chains, induced by elastin-derived peptides, plays a major role in the function of the IR. Using the 3T3-L1 adipocyte line, we show that removal of the sialic acid from N-glycan chains (N893 and N908), induced by the elastin receptor complex (ERC) and elastin derived-peptides (EDPs), leads to a decrease in the autophosphorylation activity of the insulin receptor. We demonstrate by molecular dynamics approaches that the absence of sialic acids on one of these two sites is sufficient to generate local and general modifications of the structure of the IR. Biochemical approaches highlight a decrease in the interaction between insulin and its receptor when ERC sialidase activity is induced by EDPs. Therefore, desialylation by EDPs is synonymous with a decrease of IR sensitivity in adipocytes and could thus be a potential source of insulin resistance associated with diabetic conditions.


Assuntos
Células 3T3-L1 , Adipócitos , Elastina , Insulina , Receptor de Insulina , Receptores de Superfície Celular , Ácidos Siálicos , Animais , Receptor de Insulina/metabolismo , Camundongos , Adipócitos/metabolismo , Insulina/metabolismo , Elastina/metabolismo , Ácidos Siálicos/metabolismo , Fosforilação , Resistência à Insulina , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Ácido N-Acetilneuramínico/metabolismo , Transdução de Sinais
12.
J Hepatol ; 57(2): 344-51, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22521344

RESUMO

BACKGROUND & AIMS: Folate and cobalamin are methyl donors needed for the synthesis of methionine, which is the precursor of S-adenosylmethionine, the substrate of methylation in epigenetic, and epigenomic pathways. Methyl donor deficiency produces liver steatosis and predisposes to metabolic syndrome. Whether impaired fatty acid oxidation contributes to this steatosis remains unknown. METHODS: We evaluated the consequences of methyl donor deficient diet in liver of pups from dams subjected to deficiency during gestation and lactation. RESULTS: The deprived rats had microvesicular steatosis, with increased triglycerides, decreased methionine synthase activity, S-adenosylmethionine, and S-adenosylmethionine/S-adenosylhomocysteine ratio. We observed no change in apoptosis markers, oxidant and reticulum stresses, and carnityl-palmitoyl transferase 1 activity, and a decreased expression of SREBP-1c. Impaired beta-oxidation of fatty acids and carnitine deficit were the predominant changes, with decreased free and total carnitines, increased C14:1/C16 acylcarnitine ratio, decrease of oxidation rate of palmitoyl-CoA and palmitoyl-L-carnitine and decrease of expression of novel organic cation transporter 1, acylCoA-dehydrogenase and trifunctional enzyme subunit alpha and decreased activity of complexes I and II. These changes were related to lower protein expression of ER-α, ERR-α and HNF-4α, and hypomethylation of PGC-1α co-activator that reduced its binding with PPAR-α, ERR-α, and HNF-4α. CONCLUSIONS: The liver steatosis resulted predominantly from hypomethylation of PGC1-α, decreased binding with its partners and subsequent impaired mitochondrial fatty acid oxidation. This link between methyl donor deficiency and epigenomic deregulations of energy metabolism opens new insights into the pathogenesis of fatty liver disease, in particular, in relation to the fetal programming hypothesis.


Assuntos
Receptor alfa de Estrogênio/fisiologia , Ácidos Graxos/metabolismo , Fator 4 Nuclear de Hepatócito/fisiologia , Fígado/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores de Estrogênio/fisiologia , Fatores de Transcrição/metabolismo , Animais , Transporte de Elétrons , Estresse do Retículo Endoplasmático , Metabolismo Energético , Receptor alfa de Estrogênio/análise , Fígado Gorduroso/etiologia , Ácido Fólico/sangue , Fator 4 Nuclear de Hepatócito/análise , Metilação , Oxirredução , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Wistar , Receptores de Estrogênio/análise , Vitamina B 12/sangue , Receptor ERRalfa Relacionado ao Estrogênio
13.
Cancers (Basel) ; 14(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36230790

RESUMO

Sialidases or neuraminidases (NEU) are glycosidases which cleave terminal sialic acid residues from glycoproteins, glycolipids and oligosaccharides. Four types of mammalian sialidases, which are encoded by different genes, have been described with distinct substrate specificity and subcellular localization: NEU-1, NEU-2, NEU-3 and NEU-4. Among them, NEU-1 regulates many membrane receptors through desialylation which results in either the activation or inhibition of these receptors. At the plasma membrane, NEU-1 also associates with the elastin-binding protein and the carboxypeptidase protective protein/cathepsin A to form the elastin receptor complex. The activation of NEU-1 is required for elastogenesis and signal transduction through this receptor, and this is responsible for the biological effects that are mediated by the elastin-derived peptides (EDP) on obesity, insulin resistance and non-alcoholic fatty liver diseases. Furthermore, NEU-1 expression is upregulated in hepatocellular cancer at the mRNA and protein levels in patients, and this sialidase regulates the hepatocellular cancer cells' proliferation and migration. The implication of NEU-1 in other cancer types has also been shown notably in the development of pancreatic carcinoma and breast cancer. Altogether, these data indicate that NEU-1 plays a key role not only in metabolic disorders, but also in the development of several cancers which make NEU-1 a pharmacological target of high potential in these physiopathological contexts.

14.
Front Endocrinol (Lausanne) ; 13: 815356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222273

RESUMO

The incidence of cardiovascular diseases is increasing worldwide with the growing aging of the population. Biological aging has major influence on the vascular tree and is associated with critical changes in the morphology and function of the arterial wall together with an extensive remodeling of the vascular extracellular matrix. Elastic fibers fragmentation and release of elastin degradation products, also known as elastin-derived peptides (EDPs), are typical hallmarks of aged conduit arteries. Along with the direct consequences of elastin fragmentation on the mechanical properties of arteries, the release of EDPs has been shown to modulate the development and/or progression of diverse vascular and metabolic diseases including atherosclerosis, thrombosis, type 2 diabetes and nonalcoholic steatohepatitis. Most of the biological effects mediated by these bioactive peptides are due to a peculiar membrane receptor called elastin receptor complex (ERC). This heterotrimeric receptor contains a peripheral protein called elastin-binding protein, the protective protein/cathepsin A, and a transmembrane sialidase, the neuraminidase-1 (NEU1). In this review, after an introductive part on the consequences of aging on the vasculature and the release of EDPs, we describe the composition of the ERC, the signaling pathways triggered by this receptor, and the current pharmacological strategies targeting ERC activation. Finally, we present and discuss new regulatory functions that have emerged over the last few years for the ERC through desialylation of membrane glycoproteins by NEU1, and its potential implication in receptor transactivation.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Idoso , Aterosclerose/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Peptídeos/metabolismo , Receptores de Superfície Celular/metabolismo
15.
Am J Pathol ; 176(1): 270-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19948829

RESUMO

Methyl donor deficiency (MDD) during pregnancy influences intrauterine development. Ghrelin is expressed in the stomach of fetuses and influences fetal growth, but MDD influence on gastric ghrelin is unknown. We examined the gastric ghrelin system in MDD-induced intrauterine growth retardation. By using specific markers and approaches (such as periodic acid-Schiff, bromodeoxyuridine, homocysteine, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling, immunostaining, reverse transcription-polymerase chain reaction), we studied the gastric oxyntic mucosa cellular organization and ghrelin gene expression in the mucosa in 20-day-old fetuses and weanling pups, and plasma ghrelin concentration in weanling rat pups of dams either normally fed or deprived of choline, folate, vitamin B6, and vitamin B12 during gestation and suckling periods. MDD fetuses weighed less than controls; the weight deficit reached 57% at weaning (P < 0.001). Both at the end of gestation and at weaning, they presented with an aberrant gastric oxyntic mucosa formation with loss of cell polarity, anarchic cell migration, abnormal progenitor differentiation, apoptosis, and signs of surface layer erosion. Ghrelin cells were abnormally located in the pit region of oxyntic glands. At weaning, plasma ghrelin levels were decreased (-28%; P < 0.001) despite unchanged mRNA expression in the stomach. This decrease was associated with lower body weight. Taken together, these data indicate that one mechanism through which MDD influences fetal programming is the remodeling of gastric cellular organization, leading to dysfunction of the ghrelin system and dramatic effects on growth.


Assuntos
Deficiências Nutricionais/embriologia , Deficiências Nutricionais/fisiopatologia , Desenvolvimento Fetal , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Grelina/metabolismo , Animais , Peso Corporal , Linhagem da Célula , Colina/metabolismo , Células Enteroendócrinas/metabolismo , Feminino , Ácido Fólico/metabolismo , Grelina/sangue , Hormônio do Crescimento/sangue , Homocisteína/sangue , Imuno-Histoquímica , Gravidez , Ratos , Ratos Wistar , Vitamina B 12/metabolismo , Desmame
16.
Cell Biosci ; 11(1): 206, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903296

RESUMO

BACKGROUND: Vascular aging is associated with remodeling of elastin, one of the main extracellular matrix component of the arterial wall, and production of elastin-derived peptides (EDP). These extracellular matrix degradation products have been shown to trigger biological activities through the elastin receptor complex (ERC) and data from the last decade have brought significant insights on the critical role played by its NEU1 subunit in the biological effects mediated by EDP and the ERC in vascular and metabolic diseases. RESULTS: Using a proteomic approach, we previously identified new potential interaction partners of membrane NEU1. Here, we validated the interaction between NEU1 and the ß2 integrin in human monocytes and show that binding of EDP to the ERC leads to desialylation of ß2 integrin through NEU1. A similar action mechanism was identified in human umbilical vein endothelial cells (HUVEC) for intercellular cell adhesion molecule-1 (ICAM-1). Importantly, these effects were associated with a significant increase in monocyte adhesion to endothelial cells and monocyte transendothelial migration. CONCLUSIONS: These results demonstrate that membrane NEU1 sialidase interacts and modulates the sialylation levels of the ß2 integrin and ICAM-1 through the ERC in monocytes and endothelial cells, respectively, and suggest that EDP and the ERC, through this newly identified common mode of action governed by NEU1, may be important regulators of circulating monocyte recruitment to inflamed vascular sites. Moreover, by its ability to interact with and to modulate the sialylation of key membrane glycoproteins through NEU1, new biological functions are anticipated for EDP and the ERC in elastin remodeling-associated disorders.

17.
Sci Rep ; 11(1): 22278, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782679

RESUMO

Numerous recent studies have shown that in the continuum of cardiovascular diseases, the measurement of arterial stiffness has powerful predictive value in cardiovascular risk and mortality and that this value is independent of other conventional risk factors, such as age, cholesterol levels, diabetes, smoking, or average blood pressure. Vascular stiffening is often the main cause of arterial hypertension (AHT), which is common in the presence of obesity. However, the mechanisms leading to vascular stiffening, as well as preventive factors, remain unclear. The aim of the present study was to investigate the consequences of apelin deficiency on the vascular stiffening and wall remodeling of aorta in mice. This factor freed by visceral adipose tissue, is known for its homeostasic role in lipid and vascular metabolisms, or again in inflammation. We compared the level of metabolic markers, inflammation of white adipose tissue (WAT), and aortic wall remodeling from functional and structural approaches in apelin-deficient and wild-type (WT) mice. Apelin-deficient mice were generated by knockout of the apelin gene (APL-KO). From 8 mice by groups, aortic stiffness was analyzed by pulse wave velocity measurements and by characterizations of collagen and elastic fibers. Mann-Whitney statistical test determined the significant data (p < 5%) between groups. The APL-KO mice developed inflammation, which was associated with significant remodeling of visceral WAT, such as neutrophil elastase and cathepsin S expressions. In vitro, cathepsin S activity was detected in conditioned medium prepared from adipose tissue of the APL-KO mice, and cathepsin S activity induced high fragmentations of elastic fiber of wild-type aorta, suggesting that the WAT secretome could play a major role in vascular stiffening. In vivo, remodeling of the extracellular matrix (ECM), such as collagen accumulation and elastolysis, was observed in the aortic walls of the APL-KO mice, with the latter associated with high cathepsin S activity. In addition, pulse wave velocity (PWV) and AHT were increased in the APL-KO mice. The latter could explain aortic wall remodeling in the APL-KO mice. The absence of apelin expression, particularly in WAT, modified the adipocyte secretome and facilitated remodeling of the ECM of the aortic wall. Thus, elastolysis of elastic fibers and collagen accumulation contributed to vascular stiffening and AHT. Therefore, apelin expression could be a major element to preserve vascular homeostasis.


Assuntos
Aorta/metabolismo , Aorta/fisiopatologia , Apelina/deficiência , Matriz Extracelular/metabolismo , Rigidez Vascular/genética , Animais , Apelina/genética , Apelina/metabolismo , Biomarcadores , Pressão Sanguínea , Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Elastase Pancreática/genética , Elastase Pancreática/metabolismo
18.
Nanoscale ; 13(2): 1124-1133, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33399602

RESUMO

Arterial stiffness is a complex process affecting the aortic tree that significantly contributes to cardiovascular diseases (systolic hypertension, coronary artery disease, heart failure or stroke). This process involves a large extracellular matrix remodeling mainly associated with elastin content decrease and collagen content increase. Additionally, various chemical modifications that accumulate with ageing have been shown to affect long-lived assemblies, such as elastic fibers, that could affect their elasticity. To precisely characterize the fiber changes and the evolution of its elasticity with ageing, high resolution and multimodal techniques are needed for precise insight into the behavior of a single fiber and its surrounding medium. In this study, the latest developments in atomic force microscopy and the related nanomechanical modes are used to investigate the evolution and in a near-physiological environment, the morphology and elasticity of aorta cross sections obtained from mice of different ages with an unprecedented resolution. In correlation with more classical approaches such as pulse wave velocity and fluorescence imaging, we demonstrate that the relative Young's moduli of elastic fibers, as well as those of the surrounding areas, significantly increase with ageing. This nanoscale characterization presents a new view on the stiffness process, showing that, besides the elastin and collagen content changes, elasticity is impaired at the molecular level, allowing a deeper understanding of the ageing process. Such nanomechanical AFM measurements of mouse tissue could easily be applied to studies of diseases in which elastic fibers suffer pathologies such as atherosclerosis and diabetes, where the precise quantification of fiber elasticity could better follow the fiber remodeling and predict plaque rupture.


Assuntos
Aorta , Análise de Onda de Pulso , Envelhecimento , Animais , Elasticidade , Camundongos , Microscopia de Força Atômica
19.
Int J Cancer ; 127(6): 1347-55, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20209494

RESUMO

MMP11 expression is a poor prognosis factor in human carcinomas. Although it has been shown to favor primary tumor development, its role in metastatic processes remains unclear. We studied the hematogenous metastatic activity of C26 mouse colon cancer cells injected into the tail vain of wild-type or MMP11-deficient mice during 2 months. Using X-ray computed tomography to image metastasis development in recipient living mice, lung metastases were found to occur earlier and to grow faster in wild-type mice. Histological analyses of the lung, liver, kidney, adrenal gland, mammary gland, ovary and salivary gland, performed at the end of experiment, also showed lower numbers of metastases in wild-type mice, regardless of organ. Lung metastases showed similar Factor VIII-positive vascular networks regardless of the mouse MMP11 status. However, those found in MMP11-deficient mice also exhibited vessel-like structures that did not express Factor VIII, Lyve-1 and vimentin, and were not stained with PAS. Consequently, they did not correspond to vascular or lymphatic vessels or to vascular mimicry channels. Collectively, these results revealed significant spatio-temporal variability that is dependent on host MMP11 status. Furthermore, they point-out the paradoxical role of MMP11 in favoring the onset and growth of lung metastases but limiting lung foci number, and inhibiting the cancer cell dissemination to other organs. These data highlight the complexity of the metastatic process in which the same factor can play activator or repressor functions depending on the metastatic step.


Assuntos
Metaloproteinase 11 da Matriz/metabolismo , Metástase Neoplásica , Animais , Camundongos , Camundongos Endogâmicos BALB C , Tomografia Computadorizada por Raios X
20.
Front Oncol ; 10: 519, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351895

RESUMO

Cellular functions are regulated by extracellular signals such as hormones, neurotransmitters, matrix ligands, and other chemical or physical stimuli. Ligand binding on its transmembrane receptor induced cell signaling and the recruitment of several interacting partners to the plasma membrane. Nowadays, it is well-established that the transmembrane domain is not only an anchor of these receptors to the membrane, but it also plays a key role in receptor dimerization and activation. Indeed, interactions between transmembrane helices are associated with specific biological activity of the proteins as cell migration, proliferation, or differentiation. Overexpression or constitutive dimerization (due notably to mutations) of these transmembrane receptors are involved in several physiopathological contexts as cancers. The transmembrane domain of tyrosine kinase receptors as ErbB family proteins (implicated in several cancers as HER2 in breast cancer) or other receptors as Neuropilins has been described these last years as a target to inhibit their dimerization/activation using several strategies. In this review, we will focus on the strategy which consists in using peptides to disturb in a specific manner the interactions between transmembrane domains and the signaling pathways (induced by ligand binding) of these receptors involved in cancer. This approach can be extended to inhibit other transmembrane protein dimerization as neuraminidase-1 (the catalytic subunit of elastin receptor complex), Discoidin Domain Receptor 1 (a tyrosine kinase receptor activated by type I collagen) or G-protein coupled receptors (GPCRs) which are involved in cancer processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA