RESUMO
Cat fleas, small blood-feeding ectoparasites that feed on humans and animals, cause discomfort through their bites, and can transmit numerous diseases to animals and humans. Traditionally, fleas have been reared for research on live animals, but this process requires animal handling permits, inflicts discomfort on animals, and requires money and time to maintain the host animals. Although artificial membrane-based feeding systems have been implemented, these methods are not sustainable in the long term because they result in lower blood consumption and egg production than those with rearing on live hosts. To maximize these parameters, we tested blood from four hosts to determine the most suitable blood, on the basis of blood consumption and egg production. We also tested the effects of adding the phagostimulant adenosine-5´-triphosphate to the blood to maximize blood consumption. In 48 hours, fleas fed dog blood consumed the most blood, averaging 9.5 µL per flea, whereas fleas fed on cow, cat, or human blood consumed 8.3 µL, 5.7 µL, or 5.2 µL, respectively. Addition of 0.01 M and 0.1 M adenosine-5´-triphosphate to dog and cow blood did not enhance blood consumption. In a 1-week feeding period, the total egg production was also greatest in fleas fed dog blood, with females producing 129.5 eggs, whereas females on cat, human, and cow blood produced 97.2, 83.0, and 70.7 eggs, respectively. The observed results in dog blood indicate an improvement over previously reported results in cat fleas fed with an artificial feeding system. Improving the sustainability of rearing cat flea colonies without feeding on live animals will enable more humane and convenient production of this pest for scientific research.
Assuntos
Doenças do Gato , Ctenocephalides , Infestações por Pulgas , Sifonápteros , Feminino , Bovinos , Animais , Cães , Humanos , Gatos , Infestações por Pulgas/prevenção & controle , Infestações por Pulgas/veterinária , Adenosina/farmacologia , Doenças do Gato/parasitologiaRESUMO
The reliance on blood is a limiting factor for mass rearing of mosquitoes for Sterile-Insect-Technique (SIT) and other mosquito-based control strategies. To solve this problem, we have developed SkitoSnack, a formulated diet for Aedes aegypti (L) mosquitoes, as an alternative for vertebrate blood. Here we addressed the question if long-term yellow fever mosquito culture with SkitoSnack resulted in changed life history traits and fitness of the offspring compared to blood-raised mosquitoes. We also explored if SkitoSnack is suitable to raise Asian tiger mosquitos, Aedes albopictus (L.), and the human bed bug, Cimex lectularius (L). We measured life history traits for 30th generation SkitoSnack-raised Ae. aegypti and 11th generation SkitoSnack-raised Ae. albopictus, and compared them with control mosquitoes raised on blood only. We compared meal preference, flight performance, and reproductive fitness in Ae. aegypti raised on SkitoSnack or blood. We also offered SkitoSnack to bed bug nymphs. We found that long-term culture with SkitoSnack resulted in mosquitoes with similar life history traits compared to bovine blood-raised mosquitoes in both species we studied. Also, Ae. aegypti mosquitoes raised on SkitoSnack had similar flight performance compared to blood raised mosquitoes, were still strongly attracted by human smell and had equal mating success. Minimal feeding occurred in bed bugs. Our results suggest that long-term culture with the blood-meal replacement SkitoSnack results in healthy, fit mosquitoes. Therefore, artificial diets like SkitoSnack can be considered as a viable alternative for vertebrate blood in laboratory mosquito culture as well as for mosquito mass production for Sterile-Insect-Technique mosquito control interventions. SkitoSnack was not suitable to induce engorgement of bed bugs.
Assuntos
Aedes/crescimento & desenvolvimento , Percevejos-de-Cama/crescimento & desenvolvimento , Substitutos Sanguíneos/farmacologia , Comportamento Alimentar/fisiologia , Mosquitos Vetores/crescimento & desenvolvimento , Animais , Bovinos , Controle de MosquitosRESUMO
Bed bug populations are increasing around the world at an alarming rate and have become a major public health concern. The appearance of bed bug populations in areas where Chagas disease is endemic raises questions about the role of these insects in the transmission of Trypanosoma cruzi, the etiological agent of the disease. In a series of laboratory evaluations, bed bug adults and nymphs were experimentally fed with T. cruzi-infected blood to assess the ability of T. cruzi to survive inside the bed bug and throughout the insect's molting process. Live T. cruzi were observed in gut contents of experimentally infected bed bug adults via light microscopy and the identity of the parasite was confirmed via polymerase chain reaction analysis. T. cruzi persisted at least 97-d postinfection in adult bed bugs. Nymphal stage bed bugs that were infected with T. cruzi maintained the parasite after molting, indicating that transstadial passage of T. cruzi in bed bugs took place. This report provides further evidence of acquisition, maintenance, and for the first time, transstadial persistence of T. cruzi in bed bugs.
Assuntos
Percevejos-de-Cama/parasitologia , Doença de Chagas/transmissão , Insetos Vetores/parasitologia , Trypanosoma cruzi/fisiologia , Animais , Percevejos-de-Cama/crescimento & desenvolvimento , Feminino , Insetos Vetores/crescimento & desenvolvimento , Longevidade , Masculino , Ninfa/crescimento & desenvolvimento , Ninfa/parasitologiaRESUMO
Recently, the bed bug, Cimex lectularius L. has re-emerged as a serious and growing problem in many parts of the world. Presence of resistant bed bugs and the difficulty to eliminate them has renewed interest in alternative control tactics. Similar to other haematophagous arthropods, bed bugs rely on their olfactory system to detect semiochemicals in the environment. Previous studies have morphologically characterized olfactory organs of bed bugs' antenna and have physiologically evaluated the responses of olfactory receptor neurons (ORNs) to host-derived chemicals. To date, odorant binding proteins (OBPs) and odorant receptors (ORs) associated with these olfaction processes have not been studied in bed bugs. Chemoreception in insects requires formation of heteromeric complexes of ORs and a universal OR coreceptor (Orco). Orco is the constant chain of every odorant receptor in insects and is critical for insect olfaction but does not directly bind to odorants. Orco agonists and antagonists have been suggested as high-value targets for the development of novel insect repellents. In this study, we have performed RNAseq of bed bug sensory organs and identified several odorant receptors as well as Orco. We characterized Orco expression and investigated the effect of chemicals targeting Orco on bed bug behavior and reproduction. We have identified partial cDNAs of six C. lectularius OBPs and 16 ORs. Full length bed bug Orco was cloned and sequenced. Orco is widely expressed in different parts of the bed bug including OR neurons and spermatozoa. Treatment of bed bugs with the agonist VUAA1 changed bed bug pheromone-induced aggregation behavior and inactivated spermatozoa. We have described and characterized for the first time OBPs, ORs and Orco in bed bugs. Given the importance of these molecules in chemoreception of this insect they are interesting targets for the development of novel insect behavior modifiers.