Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 41(17): e111650, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35899396

RESUMO

Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction-induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKß is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKß's ability to recognize stress fibers in cells and Z-discs in muscle fibers when mechanically perturbed. Consequently, ZAK-deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Músculo Esquelético , Animais , MAP Quinase Quinase Quinases , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Fosforilação , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
2.
Hum Mol Genet ; 32(17): 2751-2770, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37427997

RESUMO

The ZAK gene encodes two functionally distinct kinases, ZAKα and ZAKß. Homozygous loss of function mutations affecting both isoforms causes a congenital muscle disease. ZAKß is the only isoform expressed in skeletal muscle and is activated by muscle contraction and cellular compression. The ZAKß substrates in skeletal muscle or the mechanism whereby ZAKß senses mechanical stress remains to be determined. To gain insights into the pathogenic mechanism, we exploited ZAK-deficient cell lines, zebrafish, mice and a human biopsy. ZAK-deficient mice and zebrafish show a mild phenotype. In mice, comparative histopathology data from regeneration, overloading, ageing and sex conditions indicate that while age and activity are drivers of the pathology, ZAKß appears to have a marginal role in myoblast fusion in vitro or muscle regeneration in vivo. The presence of SYNPO2, BAG3 and Filamin C (FLNC) in a phosphoproteomics assay and extended analyses suggested a role for ZAKß in the turnover of FLNC. Immunofluorescence analysis of muscle sections from mice and a human biopsy showed evidence of FLNC and BAG3 accumulations as well as other myofibrillar myopathy markers. Moreover, endogenous overloading of skeletal muscle exacerbated the presence of fibres with FLNC accumulations in mice, indicating that ZAKß signalling is necessary for an adaptive turnover of FLNC that allows for the normal physiological response to sustained mechanical stress. We suggest that accumulation of mislocalized FLNC and BAG3 in highly immunoreactive fibres contributes to the pathogenic mechanism of ZAK deficiency.


Assuntos
Miopatias Congênitas Estruturais , Peixe-Zebra , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Filaminas/genética , Filaminas/metabolismo , Músculo Esquelético/metabolismo , Mutação , Miopatias Congênitas Estruturais/metabolismo , Isoformas de Proteínas/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
3.
J Clin Lab Anal ; 37(23-24): e24982, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38115685

RESUMO

BACKGROUND: Previous investigations pointed out a role for antigen stimulation in Sezary syndrome (SS). High-throughput sequencing of the T cell receptor (TR) offers several applications beyond diagnostic purposes, including the study of T cell pathogenesis. METHODS: We performed high-throughput RNA sequencing of the TR alpha (TRA) and beta (TRB) genes focusing on the complementarity-determining region 3 (CDR3) in 11 SS and one erythrodermic mycosis fungoides (MF) patients. Five psoriasis patients were employed as controls. Peripheral blood CD4+ cells were isolated and RNA sequenced (HiSeq2500). High-resolution HLA typing was performed in neoplastic patients. RESULTS: Highly expanded predominant TRA and TRB CDR3 were only found in SS patients (median frequency: 94.4% and 93.7%). No remarkable CDR3 expansions were observed in psoriasis patients (median frequency of predominant TRA and TRB CDR3: 0.87% and 0.69%, p < 0.001 compared to SS). CDR3 almost identical to the predominant were identified within each SS patient and were exponentially correlated with frequencies of the predominant CDR3 (R2 = 0.918, p < 0.001). Forty-six different CDR3 were shared between SS patients displaying HLA similarities, including predominant TRA and TRB CDR3 in one patient that were found in other three patients. Additionally, 351 antigen matches were detected (Cytomegalovirus, Epstein-Barr, Influenza virus, and self-antigens), and the predominant CDR3 of two different SS patients matched CDR3 with specificity for Influenza and Epstein-Barr viruses. CONCLUSIONS: Besides detecting clonality, these findings shed light on the nature of SS-related antigens, pointing to RNA sequencing as a useful tool for simultaneous clonality and biological analysis in SS.


Assuntos
Psoríase , Síndrome de Sézary , Neoplasias Cutâneas , Humanos , Síndrome de Sézary/genética , Síndrome de Sézary/patologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T/genética , Regiões Determinantes de Complementaridade/genética , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Cutâneas/genética
4.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175717

RESUMO

Chronic lymphocytic leukemia (CLL) is the most common leukemia among adults worldwide. Although genome-wide association studies (GWAS) have uncovered the germline genetic component underlying CLL susceptibility, the potential use of GWAS-identified risk variants to predict disease progression and patient survival remains unexplored. Here, we evaluated whether 41 GWAS-identified risk variants for CLL could influence overall survival (OS) and disease progression, defined as time to first treatment (TTFT) in a cohort of 1039 CLL cases ascertained through the CRuCIAL consortium. Although this is the largest study assessing the effect of GWAS-identified susceptibility variants for CLL on OS, we only found a weak association of ten single nucleotide polymorphisms (SNPs) with OS (p < 0.05) that did not remain significant after correction for multiple testing. In line with these results, polygenic risk scores (PRSs) built with these SNPs in the CRuCIAL cohort showed a modest association with OS and a low capacity to predict patient survival, with an area under the receiver operating characteristic curve (AUROC) of 0.57. Similarly, seven SNPs were associated with TTFT (p < 0.05); however, these did not reach the multiple testing significance threshold, and the meta-analysis with previous published data did not confirm any of the associations. As expected, PRSs built with these SNPs showed reduced accuracy in prediction of disease progression (AUROC = 0.62). These results suggest that susceptibility variants for CLL do not impact overall survival and disease progression in CLL patients.


Assuntos
Leucemia Linfocítica Crônica de Células B , Adulto , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Estudo de Associação Genômica Ampla , Fatores de Risco , Progressão da Doença , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
5.
Exp Cell Res ; 395(2): 112179, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32768501

RESUMO

The Igfn1 gene produces multiple proteins by alternative splicing predominantly expressed in skeletal muscle. Igfn1 deficient clones derived from C2C12 myoblasts show reduced fusion index and morphological differences compared to control myotubes. Here, we first show that G:F actin ratios are significantly higher in differentiating IGFN1-deficient C2C12 myoblasts, suggesting that fusion and differentiation defects are underpinned by deficient actin remodelling. We obtained pull-downs from skeletal muscle with IGFN1 fragments and applied a proteomics approach. The proteomic composition of IGFN1 complexes identified the cytoskeleton and an association with the proteasome as the main networks. The actin nucleating protein COBL was selected for further validation. COBL is expressed in C2C12 myoblasts from the first stages of myoblast fusion but not in proliferating cells. COBL is also expressed in adult muscle and, as IGFN1, localizes to the Z-disc. We show that IGFN1 interacts, stabilizes and colocalizes with COBL and prevents the ability of COBL to form actin ruffles in COS7 cells. COBL loss of function C2C12-derived clones are able to fuse, therefore indicating that COBL or the IGFN1/COBL interaction are not essential for myoblast fusion.


Assuntos
Citoesqueleto de Actina/metabolismo , Comunicação Celular/fisiologia , Proteínas dos Microfilamentos/metabolismo , Músculo Esquelético/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Citoesqueleto/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Proteômica , Sarcômeros/metabolismo
6.
Hum Mol Genet ; 27(10): 1723-1731, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29509900

RESUMO

Polyglutamine expansions in the huntingtin gene cause Huntington's disease (HD). Huntingtin is ubiquitously expressed, leading to pathological alterations also in peripheral organs. Variations in the length of the polyglutamine tract explain up to 70% of the age-at-onset variance, with the rest of the variance attributed to genetic and environmental modifiers. To identify novel disease modifiers, we performed an unbiased mutagenesis screen on an HD mouse model, identifying a mutation in the skeletal muscle voltage-gated sodium channel (Scn4a, termed 'draggen' mutation) as a novel disease enhancer. Double mutant mice (HD; Scn4aDgn/+) had decreased survival, weight loss and muscle atrophy. Expression patterns show that the main tissue affected is skeletal muscle. Intriguingly, muscles from HD; Scn4aDgn/+ mice showed adaptive changes similar to those found in endurance exercise, including AMPK activation, fibre type switching and upregulation of mitochondrial biogenesis. Therefore, we evaluated the effects of endurance training on HD mice. Crucially, this training regime also led to detrimental effects on HD mice. Overall, these results reveal a novel role for skeletal muscle in modulating systemic HD pathogenesis, suggesting that some forms of physical exercise could be deleterious in neurodegeneration.


Assuntos
Doença de Huntington/genética , Atrofia Muscular/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Animais , Modelos Animais de Doenças , Treino Aeróbico , Elementos Facilitadores Genéticos , Humanos , Proteína Huntingtina/genética , Doença de Huntington/fisiopatologia , Doença de Huntington/terapia , Camundongos , Atrofia Muscular/fisiopatologia , Atrofia Muscular/terapia , Mutação , Neurônios/patologia , Neurônios/fisiologia , Biogênese de Organelas , Peptídeos/genética , Condicionamento Físico Animal , Expansão das Repetições de Trinucleotídeos/genética
7.
J Exp Bot ; 71(16): 4972-4984, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32309861

RESUMO

Plants and arbuscular mycorrhizal fungi (AMF) engage in mutually beneficial symbioses based on a reciprocal exchange of nutrients. The beneficial character of the symbiosis is maintained through a mechanism called autoregulation of mycorrhization (AOM). AOM includes root-to-shoot-to-root signaling; however, the molecular details of AOM are poorly understood. AOM shares many features of autoregulation of nodulation (AON) where several genes are known, including the receptor-like kinase SUPER NUMERIC NODULES (SUNN), root-to-shoot mobile CLAVATA3/ENDOSPERM SURROUNDING REGION (ESR)-RELATED (CLE) peptides, and the hydroxyproline O-arabinosyltransferase ROOT DETERMINED NODULATION1 (RDN1) required for post-translational peptide modification. In this work, CLE53 was identified to negatively regulate AMF symbiosis in a SUNN- and RDN1-dependent manner. CLE53 expression was repressed at low phosphorus, while it was induced by AMF colonization and high phosphorus. CLE53 overexpression reduced AMF colonization in a SUNN- and RDN1 dependent manner, while cle53, rdn1, and sunn mutants were more colonized than the wild type. RNA-sequencing identified 700 genes with SUNN-dependent regulation in AMF-colonized plants, providing a resource for future identification of additional AOM genes. Disruption of AOM genes in crops potentially constitutes a novel route for improving AMF-derived phosphorus uptake in agricultural systems with high phosphorus levels.


Assuntos
Medicago truncatula , Micorrizas , Homeostase , Medicago truncatula/genética , Raízes de Plantas , Transdução de Sinais , Simbiose
8.
Brain ; 140(1): 37-48, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27816943

RESUMO

Congenital myopathies define a heterogeneous group of neuromuscular diseases with neonatal or childhood hypotonia and muscle weakness. The genetic cause is still unknown in many patients, precluding genetic counselling and better understanding of the physiopathology. To identify novel genetic causes of congenital myopathies, exome sequencing was performed in three consanguineous families. We identified two homozygous frameshift mutations and a homozygous nonsense mutation in the mitogen-activated protein triple kinase ZAK. In total, six affected patients carry these mutations. Reverse transcription polymerase chain reaction and transcriptome analyses suggested nonsense mRNA decay as a main impact of mutations. The patients demonstrated a generalized slowly progressive muscle weakness accompanied by decreased vital capacities. A combination of proximal contractures with distal joint hyperlaxity is a distinct feature in one family. The low endurance and compound muscle action potential amplitude were strongly ameliorated on treatment with anticholinesterase inhibitor in another patient. Common histopathological features encompassed fibre size variation, predominance of type 1 fibre and centralized nuclei. A peculiar subsarcolemmal accumulation of mitochondria pointing towards the centre of the fibre was a novel histological hallmark in one family. These findings will improve the molecular diagnosis of congenital myopathies and implicate the mitogen-activated protein kinase (MAPK) signalling as a novel pathway altered in these rare myopathies.


Assuntos
Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/patologia , Miopatias Congênitas Estruturais , Proteínas Quinases/genética , Adulto , Consanguinidade , Exoma , Feminino , Humanos , MAP Quinase Quinase Quinases , Masculino , Mutação , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/fisiopatologia , Linhagem
9.
Mamm Genome ; 27(11-12): 525-537, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27484057

RESUMO

This review assesses the importance of proteostasis in skeletal muscle maintenance with a specific emphasis on autophagy. Skeletal muscle appears to be particularly vulnerable to genetic defects in basal and induced autophagy, indicating that autophagy is co-substantial to skeletal muscle maintenance and adaptation. We discuss emerging evidence that tension-induced protein unfolding may act as a direct link between mechanical stress and autophagic pathways. Mechanistic links between protein damage, autophagy and muscle hypertrophy, which is also induced by mechanical stress, are still poorly understood. However, some mouse models of muscle disease show ameliorated symptoms upon effective targeting of basal autophagy. These findings highlight the importance of autophagy as therapeutic target and suggest that elucidating connections between protein unfolding and mTOR-dependent or mTOR-independent hypertrophic responses is likely to reveal specific therapeutic windows for the treatment of muscle wasting disorders.


Assuntos
Autofagia/genética , Hipertrofia/genética , Músculo Esquelético/fisiologia , Doenças Musculares/genética , Serina-Treonina Quinases TOR/genética , Adaptação Fisiológica/genética , Animais , Humanos , Hipertrofia/fisiopatologia , Camundongos , Músculo Esquelético/patologia , Doenças Musculares/fisiopatologia , Desdobramento de Proteína , Proteostase/genética , Transdução de Sinais/genética , Estresse Mecânico
10.
Brain ; 137(Pt 12): 3171-85, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25348630

RESUMO

Mutations in the skeletal muscle channel (SCN4A), encoding the Nav1.4 voltage-gated sodium channel, are causative of a variety of muscle channelopathies, including non-dystrophic myotonias and periodic paralysis. The effects of many of these mutations on channel function have been characterized both in vitro and in vivo. However, little is known about the consequences of SCN4A mutations downstream from their impact on the electrophysiology of the Nav1.4 channel. Here we report the discovery of a novel SCN4A mutation (c.1762A>G; p.I588V) in a patient with myotonia and periodic paralysis, located within the S1 segment of the second domain of the Nav1.4 channel. Using N-ethyl-N-nitrosourea mutagenesis, we generated and characterized a mouse model (named draggen), carrying the equivalent point mutation (c.1744A>G; p.I582V) to that found in the patient with periodic paralysis and myotonia. Draggen mice have myotonia and suffer from intermittent hind-limb immobility attacks. In-depth characterization of draggen mice uncovered novel systemic metabolic abnormalities in Scn4a mouse models and provided novel insights into disease mechanisms. We discovered metabolic alterations leading to lean mice, as well as abnormal AMP-activated protein kinase activation, which were associated with the immobility attacks and may provide a novel potential therapeutic target.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Canalopatias/genética , Mutação/genética , Miotonia/genética , Transtornos Miotônicos/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Paralisias Periódicas Familiares/genética , Animais , Humanos , Camundongos , Linhagem
11.
Genes Chromosomes Cancer ; 53(9): 788-97, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24915757

RESUMO

Deletion of 13q14 as the sole abnormality is a good prognostic marker in chronic lymphocytic leukemia (CLL). Nonetheless, the prognostic value of reciprocal 13q14 translocations [t(13q)] with related 13q losses has not been fully elucidated. We described clinical and biological characteristics of 25 CLL patients with t(13q), and compared with 62 patients carrying interstitial del(13q) by conventional G-banding cytogenetics (CGC) [i-del(13q)] and 295 patients with del(13q) only detected by fluorescence in situ hybridization (FISH) [F-del(13q)]. Besides from the CLL FISH panel (D13S319, CEP12, ATM, TP53), we studied RB1 deletions in all t(13q) cases and a representative group of i-del(13q) and F-del(13q). We analyzed NOTCH1, SF3B1, and MYD88 mutations in t(13q) cases by Sanger sequencing. In all, 25 distinct t(13q) were described. All these cases showed D13S319 deletion while 32% also lost RB1. The median percentage of 13q-deleted nuclei did not differ from i-del(13q) patients (73% vs. 64%), but both were significantly higher than F-del(13q) (52%, P < 0.001). Moreover, t(13q) patients showed an increased incidence of biallelic del(13q) (52% vs. 11.3% and 14.9%, P < 0.001) and higher rates of concomitant 17p deletion (37.5% vs. 8.6% and 7.2%, P < 0.001). RB1 involvement was significantly higher in the i-del(13q) group (79%, P < 0.001). Two t(13q) patients (11.8%) carried NOTCH1 mutations. Time to first treatment in t(13q) and i-del(13q) was shorter than F-del(13q) (67, 44, and 137 months, P = 0.029), and preserved significance in the multivariate analysis. In conclusion, t(13q) and del(13q) patients detected by CGC constitute a subgroup within the 13q-deleted CLL patients associated with a worse clinical outcome.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 13/genética , Leucemia Linfocítica Crônica de Células B/diagnóstico , Translocação Genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Aberrações Cromossômicas , Estudos de Coortes , Feminino , Humanos , Cariótipo , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Pessoa de Meia-Idade , Fator 88 de Diferenciação Mieloide/genética , Fosfoproteínas/genética , Prognóstico , Fatores de Processamento de RNA , Receptor Notch1/genética , Proteína do Retinoblastoma/genética , Ribonucleoproteína Nuclear Pequena U2/genética
12.
Hum Mol Genet ; 21(8): 1706-24, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22199023

RESUMO

Ariel is a mouse mutant that suffers from skeletal muscle myofibrillar degeneration due to the rapid accumulation of large intracellular protein aggregates. This fulminant disease is caused by an ENU-induced recessive mutation resulting in an L342Q change within the motor domain of the skeletal muscle myosin protein MYH4 (MyHC IIb). Although normal at birth, homozygous mice develop hindlimb paralysis from Day 13, consistent with the timing of the switch from developmental to adult myosin isoforms in mice. The mutated myosin (MYH4(L342Q)) is an aggregate-prone protein. Notwithstanding the speed of the process, biochemical analysis of purified aggregates showed the presence of proteins typically found in human myofibrillar myopathies, suggesting that the genesis of ariel aggregates follows a pathogenic pathway shared with other conformational protein diseases of skeletal muscle. In contrast, heterozygous mice are overtly and histologically indistinguishable from control mice. MYH4(L342Q) is present in muscles from heterozygous mice at only 7% of the levels of the wild-type protein, resulting in a small but significant increase in force production in isolated single fibres and indicating that elimination of the mutant protein in heterozygotes prevents the pathological changes observed in homozygotes. Recapitulation of the L342Q change in the functional equivalent of mouse MYH4 in human muscles, MYH1, results in a more aggregate-prone protein.


Assuntos
Doenças Musculares/genética , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Sequência de Aminoácidos , Animais , Genes Recessivos , Heterozigoto , Homozigoto , Humanos , Camundongos , Dados de Sequência Molecular , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mutação , Miofibrilas/ultraestrutura , Cadeias Pesadas de Miosina/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Transcrição Gênica
13.
Proteome Sci ; 12: 25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071420

RESUMO

The myotendinous junction is a specialized structure of the muscle fibre enriched in mechanosensing complexes, including costameric proteins and core elements of the z-disc. Here, laser capture microdissection was applied to purify membrane regions from the myotendinous junctions of mouse skeletal muscles, which were then processed for proteomic analysis. Sarcolemma sections from the longitudinal axis of the muscle fibre were used as control for the specificity of the junctional preparation. Gene ontology term analysis of the combined lists indicated a statistically significant enrichment in membrane-associated proteins. The myotendinous junction preparation contained previously uncharacterized proteins, a number of z-disc costameric ligands (e.g., actinins, capZ, αB cristallin, filamin C, cypher, calsarcin, desmin, FHL1, telethonin, nebulin, titin and an enigma-like protein) and other proposed players of sarcomeric stretch sensing and signalling, such as myotilin and the three myomesin homologs. A subset were confirmed by immunofluorescence analysis as enriched at the myotendinous junction, suggesting that laser capture microdissection from muscle sections is a valid approach to identify novel myotendinous junction players potentially involved in mechanotransduction pathways.

14.
J Microbiol Biol Educ ; : e0019023, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722163

RESUMO

Within the eukaryotic cell, the actin cytoskeleton is a crucial structural framework that maintains cellular form, regulates cell movement and division, and facilitates the internal transportation of proteins and organelles. External cues induce alterations in the actin cytoskeleton primarily through the activation of Rho GTPases, which then bind to a diverse array of effector proteins to promote the local assembly or disassembly of actin. We have harnessed the extensively studied functions of RhoA in the dynamics of the actin cytoskeleton to craft a practical series for Stage 2 Biology students. This series not only imparts essential tissue culture laboratory skills but also reinforces them through repetition. These activities are presented in a scenario designed for students to explore the function of a hypothetical RhoA family member. Students produce slides from transfected cells, undertake fluorescence microscopy, process the images using ImageJ, and compile their findings in a comprehensive scientific report. The composition of the report requires independent acquisition of new knowledge and synoptic learning. According to student feedback, this early experience greatly aids in solidifying and honing the skills required to report on more extensive and intricate research projects, such as capstone projects.

15.
Ann Case Rep ; 9(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939045

RESUMO

Spontaneous regression (SR) of chronic lymphocytic leukemia (CLL) is a rare event (0.2% - 1%). Some advances have been made in understanding the tumor genetic characteristics of such patients, although the immunological mechanisms leading to SR remain unclear. We describe a series of immunological events related to regression dynamics, allowing the identification of a SR phase (associated with >99% reduction of CLL cells in peripheral blood and adenopathy resolution in less than one year, concurrently with a nine-fold increase in monocyte counts, high B2M and the appearance of an oligoclonal serum IgG band), followed by a persistent regression (PR) phase that was maintained for ≥17 months. Our observations highlight a role of monocytes and B2M in SR, potentially related to immune activation. The oligoclonal IgG band detected during SR was maintained in PR, suggesting either a change in the ability of malignant cells (IgM+IgD+IgG‒) to differentiate into IgG-secreting cells, or an anti-tumor humoral response from normal B cells. These findings imply immune and molecular mechanisms required to eliminate malignant cells and might suggest new immunotherapies for CLL.

16.
Nat Genet ; 34(4): 421-8, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12833159

RESUMO

The whirler mouse mutant (wi) does not respond to sound stimuli, and detailed ultrastructural analysis of sensory hair cells in the organ of Corti of the inner ear indicates that the whirler gene encodes a protein involved in the elongation and maintenance of stereocilia in both inner hair cells (IHCs) and outer hair cells (OHCs). BAC-mediated transgene correction of the mouse phenotype and mutation analysis identified the causative gene as encoding a novel PDZ protein called whirlin. The gene encoding whirlin also underlies the human autosomal recessive deafness locus DFNB31. In the mouse cochlea, whirlin is expressed in the sensory IHC and OHC stereocilia. Our findings suggest that this novel PDZ domain-containing molecule acts as an organizer of submembranous molecular complexes that control the coordinated actin polymerization and membrane growth of stereocilia.


Assuntos
Surdez/genética , Expressão Gênica , Proteínas de Membrana/genética , Proteínas/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Cílios/fisiologia , Cílios/ultraestrutura , Análise Mutacional de DNA , DNA Complementar/genética , Genes Recessivos , Células Ciliadas Auditivas Internas/ultraestrutura , Células Ciliadas Auditivas Externas/ultraestrutura , Humanos , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Dados de Sequência Molecular , Fenótipo , Proteínas/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
17.
Food Sci Technol Int ; 29(4): 318-330, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35225018

RESUMO

The effectiveness of commercial oxygen scavengers was investigated in order to increase the shelf-life of sliced dry-cured Iberian shoulder in MAP (modified atmosphere packaging) for up to 150 days. Five dry-cured shoulders from Iberian pigs were used. Slices of these dry-cured shoulders were randomly packaged in MAP conditions. An active packaging (AP) with oxygen scavengers was evaluated to reduce the level of oxygen within the headspace as close to 0% as possible. AP was compared to a Control Treatment (C) (without scavenger). Sliced dry-cured Iberian shoulder in AP showed lower thiobarbituric acid reactive substances values (TBARS) than control packages after 150 days of storage, and in general, volatile compounds derived from lipid oxidation, increased in C packages, whereas these remained steady in AP. Therefore, AP was effective to decrease the development of lipid oxidation during storage. In contrast, AP was not effective in preserving color changes, although no sensory differences between treatments were appreciated by the panelists.


Assuntos
Embalagem de Alimentos , Ombro , Animais , Suínos , Oxigênio , Vácuo , Lipídeos
18.
Cartilage ; 13(4): 105-118, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36250422

RESUMO

OBJECTIVE: The surgical management of nasal septal defects due to perforations, malformations, congenital cartilage absence, traumatic defects, or tumors would benefit from availability of optimally matured septal cartilage substitutes. Here, we aimed to improve in vitro maturation of 3-dimensional (3D)-printed, cell-laden polycaprolactone (PCL)-based scaffolds and test their in vivo performance in a rabbit auricular cartilage model. DESIGN: Rabbit auricular chondrocytes were isolated, cultured, and seeded on 3D-printed PCL scaffolds. The scaffolds were cultured for 21 days in vitro under standard culture media and normoxia or in prochondrogenic and hypoxia conditions, respectively. Cell-laden scaffolds (as well as acellular controls) were implanted into perichondrium pockets of New Zealand white rabbit ears (N = 5 per group) and followed up for 12 weeks. At study end point, the tissue-engineered scaffolds were extracted and tested by histological, immunohistochemical, mechanical, and biochemical assays. RESULTS: Scaffolds previously matured in vitro under prochondrogenic hypoxic conditions showed superior mechanical properties as well as improved patterns of cartilage matrix deposition, chondrogenic gene expression (COL1A1, COL2A1, ACAN, SOX9, COL10A1), and proteoglycan production in vivo, compared with scaffolds cultured in standard conditions. CONCLUSIONS: In vitro maturation of engineered cartilage scaffolds under prochondrogenic conditions that better mimic the in vivo environment may be beneficial to improve functional properties of the engineered grafts. The proposed maturation strategy may also be of use for other tissue-engineered constructs and may ultimately impact survival and integration of the grafts in the damaged tissue microenvironment.


Assuntos
Cartilagem , Condrócitos , Coelhos , Animais , Condrócitos/metabolismo , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Condrogênese
19.
Blood Adv ; 6(11): 3410-3421, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35413113

RESUMO

Current therapeutic approaches for Sézary syndrome (SS) do not achieve a significant improvement in long-term survival of patients, and they are mainly focused on reducing blood tumor burden to improve quality of life. Eradication of SS is hindered by its genetic and molecular heterogeneity. Determining effective and personalized treatments for SS is urgently needed. The present work compiles the current methods for SS patient-derived xenograft (PDX) generation and management to provide new perspectives on treatment for patients with SS. Mononuclear cells were recovered by Ficoll gradient separation from fresh peripheral blood of patients with SS (N = 11). A selected panel of 26 compounds that are inhibitors of the main signaling pathways driving SS pathogenesis, including NF-kB, MAPK, histone deacetylase, mammalian target of rapamycin, or JAK/STAT, was used for in vitro drug sensitivity testing. SS cell viability was evaluated by using the CellTiter-Glo_3D Cell Viability Assay and flow cytometry analysis. We validated one positive hit using SS patient-derived Sézary cells xenotransplanted (PDX) into NOD-SCID-γ mice. In vitro data indicated that primary malignant SS cells all display different sensitivities against specific pathway inhibitors. In vivo validation using SS PDX mostly reproduced the responses to the histone deacetylase inhibitor panobinostat that were observed in vitro. Our investigations revealed the possibility of using high-throughput in vitro testing followed by PDX in vivo validation for selective targeting of SS tumor cells in a patient-specific manner.


Assuntos
Síndrome de Sézary , Neoplasias Cutâneas , Animais , Modelos Animais de Doenças , Humanos , Mamíferos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Qualidade de Vida , Síndrome de Sézary/tratamento farmacológico , Síndrome de Sézary/patologia , Neoplasias Cutâneas/patologia
20.
Hum Mol Genet ; 18(19): 3553-66, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19578180

RESUMO

Following a screen for neuromuscular mouse mutants, we identified ostes, a novel N-ethyl N-nitrosourea-induced mouse mutant with muscle atrophy. Genetic and biochemical evidence shows that upregulation of the novel, uncharacterized transient receptor potential polycystic (TRPP) channel PKD1L2 (polycystic kidney disease gene 1-like 2) underlies this disease. Ostes mice suffer from chronic neuromuscular impairments including neuromuscular junction degeneration, polyneuronal innervation and myopathy. Ectopic expression of PKD1L2 in transgenic mice reproduced the ostes myopathic changes and, indeed, caused severe muscle atrophy in Tg(Pkd1l2)/Tg(Pkd1l2) mice. Moreover, double-heterozygous mice (ostes/+, Tg(Pkd1l2)/0) suffer from myopathic changes more profound than each heterozygote, indicating positive correlation between PKD1L2 levels and disease severity. We show that, in vivo, PKD1L2 primarily associates with endogenous fatty acid synthase in normal skeletal muscle, and these proteins co-localize to costameric regions of the muscle fibre. In diseased ostes/ostes muscle, both proteins are upregulated, and ostes/ostes mice show signs of abnormal lipid metabolism. This work shows the first role for a TRPP channel in neuromuscular integrity and disease.


Assuntos
Doenças Neuromusculares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulação para Cima , Animais , Células Cultivadas , Modelos Animais de Doenças , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Feminino , Células HeLa , Humanos , Lactente , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Mutação , Doenças Neuromusculares/genética , Ligação Proteica , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA