Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 176(6): 1340-1355.e15, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30799037

RESUMO

Th17 cells provide protection at barrier tissues but may also contribute to immune pathology. The relevance and induction mechanisms of pathologic Th17 responses in humans are poorly understood. Here, we identify the mucocutaneous pathobiont Candida albicans as the major direct inducer of human anti-fungal Th17 cells. Th17 cells directed against other fungi are induced by cross-reactivity to C. albicans. Intestinal inflammation expands total C. albicans and cross-reactive Th17 cells. Strikingly, Th17 cells cross-reactive to the airborne fungus Aspergillus fumigatus are selectively activated and expanded in patients with airway inflammation, especially during acute allergic bronchopulmonary aspergillosis. This indicates a direct link between protective intestinal Th17 responses against C. albicans and lung inflammation caused by airborne fungi. We identify heterologous immunity to a single, ubiquitous member of the microbiota as a central mechanism for systemic induction of human anti-fungal Th17 responses and as a potential risk factor for pulmonary inflammatory diseases.


Assuntos
Candida albicans/imunologia , Células Th17/imunologia , Células Th17/metabolismo , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/patogenicidade , Candida albicans/patogenicidade , Reações Cruzadas/imunologia , Fibrose Cística/imunologia , Fibrose Cística/microbiologia , Humanos , Imunidade , Imunidade Heteróloga/imunologia , Células Th17/fisiologia
2.
RNA ; 29(7): 1033-1050, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37019633

RESUMO

The RNA interference (RNAi) pathway has evolved numerous functionalities in eukaryotes, with many on display in Kingdom Fungi. RNAi can regulate gene expression, facilitate drug resistance, or even be altogether lost to improve growth potential in some fungal pathogens. In the WHO fungal priority pathogen, Aspergillus fumigatus, the RNAi system is known to be intact and functional. To extend our limited understanding of A. fumigatus RNAi, we first investigated the genetic variation in RNAi-associated genes in a collection of 217 environmental and 83 clinical genomes, where we found that RNAi components are conserved even in clinical strains. Using endogenously expressed inverted-repeat transgenes complementary to a conditionally essential gene (pabA) or a nonessential gene (pksP), we determined that a subset of the RNAi componentry is active in inverted-repeat transgene silencing in conidia and mycelium. Analysis of mRNA-seq data from RNAi double-knockout strains linked the A. fumigatus dicer-like enzymes (DclA/B) and RNA-dependent RNA polymerases (RrpA/B) to regulation of conidial ribosome biogenesis genes; however, surprisingly few endogenous small RNAs were identified in conidia that could explain this broad change. Although RNAi was not clearly linked to growth or stress response defects in the RNAi knockouts, serial passaging of RNAi knockout strains for six generations resulted in lineages with diminished spore production over time, indicating that loss of RNAi can exert a fitness cost on the fungus. Cumulatively, A. fumigatus RNAi appears to play an active role in defense against double-stranded RNA species alongside a previously unappreciated housekeeping function in regulation of conidial ribosomal biogenesis genes.


Assuntos
Aspergillus fumigatus , Transcriptoma , Aspergillus fumigatus/genética , Interferência de RNA , Esporos Fúngicos/genética , RNA de Cadeia Dupla
3.
Nucleic Acids Res ; 50(13): 7570-7590, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35212379

RESUMO

Post-transcriptional modifications can impact the stability and functionality of many different classes of RNA molecules and are an especially important aspect of tRNA regulation. It is hypothesized that cells can orchestrate rapid responses to changing environmental conditions by adjusting the specific types and levels of tRNA modifications. We uncovered strong evidence in support of this tRNA global regulation hypothesis by examining effects of the well-conserved tRNA modifying enzyme MiaA in extraintestinal pathogenic Escherichia coli (ExPEC), a major cause of urinary tract and bloodstream infections. MiaA mediates the prenylation of adenosine-37 within tRNAs that decode UNN codons, and we found it to be crucial to the fitness and virulence of ExPEC. MiaA levels shifted in response to stress via a post-transcriptional mechanism, resulting in marked changes in the amounts of fully modified MiaA substrates. Both ablation and forced overproduction of MiaA stimulated translational frameshifting and profoundly altered the ExPEC proteome, with variable effects attributable to UNN content, changes in the catalytic activity of MiaA, or availability of metabolic precursors. Cumulatively, these data indicate that balanced input from MiaA is critical for optimizing cellular responses, with MiaA acting much like a rheostat that can be used to realign global protein expression patterns.


Assuntos
Alquil e Aril Transferases/metabolismo , Infecções por Escherichia coli/microbiologia , Escherichia coli , Códon , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Humanos , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética , RNA de Transferência/metabolismo , Virulência
4.
J Proteome Res ; 19(5): 2092-2104, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32233371

RESUMO

Fungal spores and hyphal fragments play an important role as allergens in respiratory diseases. In this study, we performed trypsin shaving and secretome analyses to identify the surface-exposed proteins and secreted/shed proteins of Aspergillus fumigatus conidia, respectively. We investigated the surface proteome under different conditions, including temperature variation and germination. We found that the surface proteome of resting A. fumigatus conidia is not static but instead unexpectedly dynamic, as evidenced by drastically different surface proteomes under different growth conditions. Knockouts of two abundant A. fumigatus surface proteins, ScwA and CweA, were found to function only in fine-tuning the cell wall stress response, implying that the conidial surface is very robust against perturbations. We then compared the surface proteome of A. fumigatus to other allergy-inducing molds, including Alternaria alternata, Penicillium rubens, and Cladosporium herbarum, and performed comparative proteomics on resting and swollen conidia, as well as secreted proteins from germinating conidia. We detected 125 protein ortholog groups, including 80 with putative catalytic activity, in the extracellular region of all four molds, and 42 nonorthologous proteins produced solely by A. fumigatus. Ultimately, this study highlights the dynamic nature of the A. fumigatus conidial surface and provides targets for future diagnostics and immunotherapy.


Assuntos
Hipersensibilidade , Proteoma , Alérgenos , Aspergillus fumigatus/genética , Proteínas Fúngicas/genética , Hifas/química , Proteínas de Membrana , Proteoma/análise , Proteoma/genética , Esporos Fúngicos
5.
Environ Microbiol ; 22(9): 3722-3740, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32583550

RESUMO

Mucormycosis is an emergent, fatal fungal infection of humans and warm-blooded animals caused by species of the order Mucorales. Immune cells of the innate immune system serve as the first line of defence against inhaled spores. Alveolar macrophages were challenged with the mucoralean fungus Lichtheimia corymbifera and subjected to biotinylation and streptavidin enrichment procedures followed by LC-MS/MS analyses. A total of 28 host proteins enriched for binding to macrophage-L. corymbifera interaction. Among those, the HSP70-family protein Hspa8 was found to be predominantly responsive to living and heat-killed spores of a virulent and an attenuated strain of L. corymbifera. Confocal scanning laser microscopy of infected macrophages revealed colocalization of Hspa8 with phagocytosed spores of L. corymbifera. The amount of detectable Hspa8 was dependent on the multiplicity of infection. Incubation of alveolar macrophages with an anti-Hspa8 antibody prior to infection reduced their capability to phagocytose spores of L. corymbifera. In contrast, anti-Hspa8 antibodies did not abrogate the phagocytosis of Aspergillus fumigatus conidia by macrophages. These results suggest an important contribution of the heat-shock family protein Hspa8 in the recognition of spores of the mucoralean fungus L. corymbifera by host alveolar macrophages and define a potential immunomodulatory therapeutic target.


Assuntos
Proteínas de Choque Térmico/metabolismo , Macrófagos Alveolares/fisiologia , Mucorales/metabolismo , Animais , Anticorpos/farmacologia , Aspergillus fumigatus , Linhagem Celular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/microbiologia , Camundongos , Fagocitose/efeitos dos fármacos , Proteômica , Esporos Fúngicos
6.
Genome Res ; 26(6): 852-62, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27197207

RESUMO

Endogenous double-stranded RNA (dsRNA) must be intricately regulated in mammals to prevent aberrant activation of host inflammatory pathways by cytosolic dsRNA binding proteins. Here, we define the long, endogenous dsRNA repertoire in mammalian macrophages and monocytes during the inflammatory response to bacterial lipopolysaccharide. Hyperediting by adenosine deaminases that act on RNA (ADAR) enzymes was quantified over time using RNA-seq data from activated mouse macrophages to identify 342 Editing Enriched Regions (EERs), indicative of highly structured dsRNA. Analysis of publicly available data sets for samples of human peripheral blood monocytes resulted in discovery of 3438 EERs in the human transcriptome. Human EERs had predicted secondary structures that were significantly more stable than those of mouse EERs and were located primarily in introns, whereas nearly all mouse EERs were in 3' UTRs. Seventy-four mouse EER-associated genes contained an EER in the orthologous human gene, although nucleotide sequence and position were only rarely conserved. Among these conserved EER-associated genes were several TNF alpha-signaling genes, including Sppl2a and Tnfrsf1b, important for processing and recognition of TNF alpha, respectively. Using publicly available data and experimental validation, we found that a significant proportion of EERs accumulated in the nucleus, a strategy that may prevent aberrant activation of proinflammatory cascades in the cytoplasm. The observation of many ADAR-edited dsRNAs in mammalian immune cells, a subset of which are in orthologous genes of mouse and human, suggests a conserved role for these structured regions.


Assuntos
Lipopolissacarídeos/farmacologia , RNA de Cadeia Dupla/genética , Transcriptoma/imunologia , Regiões 3' não Traduzidas , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Animais , Sequência de Bases , Núcleo Celular , Mapeamento Cromossômico , Regulação da Expressão Gênica/imunologia , Humanos , Íntrons , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/metabolismo , Células RAW 264.7 , RNA de Cadeia Dupla/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
Anal Chem ; 90(15): 8912-8918, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29956919

RESUMO

Fungal spores are one of several environmental factors responsible for causing respiratory diseases like asthma, chronic obstructive pulmonary disease (COPD), and aspergillosis. These spores also are able to trigger exacerbations during chronic forms of disease. Different fungal spores may contain different allergens and mycotoxins, therefore the health hazards are varying between the species. Thus, it is highly important quickly to identify the composition of fungal spores in the air. In this study, UV-Raman spectroscopy with an excitation wavelength of 244 nm was applied to investigate eight different fungal species implicated in respiratory diseases worldwide. Here, we demonstrate that darkly colored spores can be directly examined, and UV-Raman spectroscopy provides the information sufficient for classifying fungal spores. Classification models on the genus, species, and strain levels were built using a combination of principal component analysis and linear discriminant analysis followed by evaluation with leave-one-batch-out-cross-validation. At the genus level an accuracy of 97.5% was achieved, whereas on the species level four different Aspergillus species were classified with 100% accuracy. Finally, classifying three strains of Aspergillus fumigatus an accuracy of 89.4% was reached. These results demonstrate that UV-Raman spectroscopy in combination with innovative chemometrics allows for fast identification of fungal spores and can be a potential alternative to currently used time-consuming cultivation.


Assuntos
Fungos/classificação , Análise Espectral Raman/métodos , Esporos Fúngicos/classificação , Aspergilose/microbiologia , Aspergillus/química , Aspergillus/classificação , Aspergillus fumigatus/química , Aspergillus fumigatus/classificação , Asma/microbiologia , Análise Discriminante , Desenho de Equipamento , Fungos/química , Humanos , Análise de Componente Principal , Doença Pulmonar Obstrutiva Crônica/microbiologia , Análise Espectral Raman/instrumentação , Esporos Fúngicos/química , Raios Ultravioleta
8.
J Infect Dis ; 216(3): 375-381, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28119486

RESUMO

Uropathogenic Escherichia coli (UPEC), the primary causative agents of urinary tract infections, colonize and invade the epithelial cells of the bladder urothelium. Infection of immature urothelial cells can result in the formation of persistent intracellular reservoirs that are refractory to antibiotic treatments. Previously, we defined a novel therapeutic strategy that used the bladder cell exfoliant chitosan to deplete UPEC reservoirs. However, although a single treatment of chitosan followed by ciprofloxacin administration had a marked effect on reducing UPEC titers within the bladder, this treatment failed to prevent relapsing bacteriuria. We show here that repeated use of chitosan in conjunction with the antibiotic ciprofloxacin completely eradicates UPEC from the urinary tract and prevents the development of relapsing bouts of bacteriuria. In addition, microscopy revealed rapid restoration of bladder integrity following chitosan treatment, indicating that chitosan can be used to effectively combat recalcitrant bladder infections without causing lasting harm to the urothelium.


Assuntos
Antibacterianos/uso terapêutico , Bacteriúria/tratamento farmacológico , Quitosana/uso terapêutico , Ciprofloxacina/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli Uropatogênica/efeitos dos fármacos , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Recidiva , Bexiga Urinária/patologia , Urotélio/patologia
10.
mBio ; 15(10): e0198224, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39297713

RESUMO

Molecular communication between host and microbe is mediated by the transfer of many different classes of macromolecules. Recently, the trafficking of RNA molecules between organisms has gained prominence as an efficient way to manipulate gene expression via RNA interference (RNAi). Here, we posit a new epigenetic control mechanism based on triple helix (triplex) structures comprising nucleic acids from both host and microbe. Indeed, RNA:DNA triplexes are known to regulate gene expression in humans, but it is unknown whether interkingdom triplexes are formed either to manipulate host processes during pathogenesis or as a host defense response. We hypothesize that a fraction of the extracellular RNAs commonly released by microbes (e.g., bacteria, fungi, and protists) and their hosts form triplexes with the genome of the other species, thereby impacting chromatin conformation and gene expression. We invite the field to consider interkingdom triplexes as unexplored weaponry in the arms race between host and microbe.


Assuntos
DNA , Epigênese Genética , DNA/genética , DNA/metabolismo , Humanos , Bactérias/genética , Bactérias/metabolismo , RNA/genética , RNA/metabolismo , Interações entre Hospedeiro e Microrganismos/genética , Conformação de Ácido Nucleico , Interações Hospedeiro-Patógeno/genética , Fungos/genética
11.
Nat Microbiol ; 9(3): 669-683, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388771

RESUMO

The opportunistic fungal pathogen Candida albicans damages host cells via its peptide toxin, candidalysin. Before secretion, candidalysin is embedded in a precursor protein, Ece1, which consists of a signal peptide, the precursor of candidalysin and seven non-candidalysin Ece1 peptides (NCEPs), and is found to be conserved in clinical isolates. Here we show that the Ece1 polyprotein does not resemble the usual precursor structure of peptide toxins. C. albicans cells are not susceptible to their own toxin, and single NCEPs adjacent to candidalysin are sufficient to prevent host cell toxicity. Using a series of Ece1 mutants, mass spectrometry and anti-candidalysin nanobodies, we show that NCEPs play a role in intracellular Ece1 folding and candidalysin secretion. Removal of single NCEPs or modifications of peptide sequences cause an unfolded protein response (UPR), which in turn inhibits hypha formation and pathogenicity in vitro. Our data indicate that the Ece1 precursor is not required to block premature pore-forming toxicity, but rather to prevent intracellular auto-aggregation of candidalysin sequences.


Assuntos
Proteínas Fúngicas , Micotoxinas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Candida albicans/metabolismo , Micotoxinas/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo
12.
J Clin Invest ; 133(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36701198

RESUMO

BACKGROUNDThe fungus Aspergillus fumigatus causes a variety of clinical phenotypes in patients with cystic fibrosis (pwCF). Th cells orchestrate immune responses against fungi, but the types of A. fumigatus-specific Th cells in pwCF and their contribution to protective immunity or inflammation remain poorly characterized.METHODSWe used antigen-reactive T cell enrichment (ARTE) to investigate fungus-reactive Th cells in peripheral blood of pwCF and healthy controls.RESULTSWe show that clonally expanded, high-avidity A. fumigatus-specific effector Th cells, which were absent in healthy donors, developed in pwCF. Individual patients were characterized by distinct Th1-, Th2-, or Th17-dominated responses that remained stable over several years. These different Th subsets target different A. fumigatus proteins, indicating that differential antigen uptake and presentation directs Th cell subset development. Patients with allergic bronchopulmonary aspergillosis (ABPA) are characterized by high frequencies of Th2 cells that cross-recognize various filamentous fungi.CONCLUSIONOur data highlight the development of heterogenous Th responses targeting different protein fractions of a single fungal pathogen and identify the development of multispecies cross-reactive Th2 cells as a potential risk factor for ABPA.FUNDINGGerman Research Foundation (DFG), under Germany's Excellence Strategy (EXC 2167-390884018 "Precision Medicine in Chronic Inflammation" and EXC 2051-390713860 "Balance of the Microverse"); Oskar Helene Heim Stiftung; Christiane Herzog Stiftung; Mukoviszidose Institut gGmb; German Cystic Fibrosis Association Mukoviszidose e.V; German Federal Ministry of Education and Science (BMBF) InfectControl 2020 Projects AnDiPath (BMBF 03ZZ0838A+B).


Assuntos
Aspergilose Broncopulmonar Alérgica , Fibrose Cística , Aspergillus fumigatus , Imunidade , Imunoglobulina E , Inflamação
13.
Trends Microbiol ; 30(5): 411-420, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34635448

RESUMO

In recent decades, RNA-based therapeutics have transitioned from a near impossibility to a compelling treatment alternative for genetic disorders and infectious diseases. The mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are truly groundbreaking, and new adaptations are already being proposed to fight other microbes. Unfortunately, the potential of RNA-based therapeutics to treat human fungal infections has remained mostly absent from the conversation, despite the fact that invasive fungal infections kill as many per year as tuberculosis and even more than malaria. Here, we argue that RNA-based therapeutics should be investigated for the treatment of human fungal infections and discuss several major roadblocks and potential circumventions that may allow for the realization of RNA-based therapies against human fungal pathogens.


Assuntos
COVID-19 , Micoses , COVID-19/terapia , Humanos , Micoses/terapia , RNA , SARS-CoV-2/genética
14.
mSphere ; 7(1): e0094021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34986319

RESUMO

Fungal infections remain a major global concern. Emerging fungal pathogens and increasing rates of resistance mean that additional research efforts and resources must be allocated to advancing our understanding of fungal pathogenesis and developing new therapeutic interventions. Neutrophilic granulocytes are a major cell type involved in protection against the important fungal pathogen Aspergillus fumigatus, where they employ numerous defense mechanisms, including production of antimicrobial extracellular vesicles. A major drawback to work with neutrophils is the lack of a suitable cell line system for the study of fungal pathogenesis. To address this problem, we assessed the feasibility of using differentiated PLB-985 neutrophil-like cells as an in vitro model to study A. fumigatus infection. We find that dimethylformamide-differentiated PLB-985 cells provide a useful recapitulation of many aspects of A. fumigatus interactions with primary human polymorphonuclear leukocytes. We show that differentiated PLB-985 cells phagocytose fungal conidia and acidify conidia-containing phagolysosomes similar to primary neutrophils, release neutrophil extracellular traps, and also produce antifungal extracellular vesicles in response to infection. In addition, we provide an improved method for the isolation of extracellular vesicles produced during infection by employing a size exclusion chromatography-based approach. Advanced liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics revealed an enrichment of extracellular vesicle marker proteins and a decrease of cytoplasmic proteins in extracellular vesicles isolated using this improved method. Ultimately, we find that differentiated PLB-985 cells can serve as a genetically tractable model to study many aspects of A. fumigatus pathogenesis. IMPORTANCE Polymorphonuclear leukocytes are an important defense against human fungal pathogens, yet our model systems to study this group of cells remain very limited in scope. In this study, we established that differentiated PLB-985 cells can serve as a model to recapitulate several important aspects of human polymorphonuclear leukocyte interactions with the important human fungal pathogen Aspergillus fumigatus. The proposed addition of a cultured neutrophil-like cell line to the experimental toolbox to study fungal pathogenesis will allow for a more mechanistic description of neutrophil antifungal biology. In addition, the easier handling of the cell line compared to primary human neutrophils allowed us to use PLB-985 cells to provide an improved method for isolation of neutrophil-derived extracellular vesicles using size exclusion chromatography. Together, these results provide significant tools and a baseline knowledge for the future study of neutrophil-derived extracellular vesicles in the laboratory.


Assuntos
Aspergillus fumigatus , Neutrófilos , Antifúngicos , Aspergillus fumigatus/fisiologia , Cromatografia Líquida , Humanos , Neutrófilos/microbiologia , Espectrometria de Massas em Tandem
15.
Microlife ; 2: uqab003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37223251

RESUMO

Extracellular vesicles are of increasing importance in the clinic, as diagnostics for complex diseases and as potential delivery systems for therapeutics. Over the past several decades, extracellular vesicles have emerged as a widespread, conserved mechanism of intercellular and interkingdom communication. The ubiquitous distribution of extracellular vesicles across life offers at least two compelling opportunities: first a path forward in the design of targeted antimicrobial delivery systems; and second, a new way to view host pathogenesis during infection. Both avenues of research are well underway. In particular, preliminary studies showing that plant and human host-derived extracellular vesicles can deliver natural antimicrobial cargos to invading fungal and bacterial pathogens are captivating. Further, modification of host extracellular vesicle populations may ultimately lead to enhanced killing and serve as a starting point for the development of more advanced therapeutic options, especially against difficult to treat pathogens. Despite the rapid pace of growth surrounding extracellular vesicle biology, many questions remain unanswered. For example, the heterogeneity of vesicle populations continues to be a confounding factor in ascribing clear functions to a vesicular subset, and the molecular cargos responsible for specific antimicrobial actions of extracellular vesicles during infection remain especially poorly described. In this short review, we will summarize the current state of affairs surrounding the antimicrobial function, and potential, of host-derived extracellular vesicles.

16.
mBio ; 13(1): e0356321, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35132877

RESUMO

In response to infections, human immune cells release extracellular vesicles (EVs) that carry a situationally adapted cocktail of proteins and nucleic acids, including microRNAs (miRNAs), to coordinate the immune response. In this study, we identified hsa-miR-21-5p and hsa-miR-24-3p as the most common miRNAs in exosomes released by human monocytes in response to the pathogenic fungus Candida albicans. Functional analysis of miRNAs revealed that hsa-miR-24-3p, but not hsa-miR-21-5p, acted across species and kingdoms, entering C. albicans and inducing fungal cell growth by inhibiting translation of the cyclin-dependent kinase inhibitor Sol1. Packaging of hsa-miR-24-3p into monocyte exosomes required binding of fungal soluble ß-glucan to complement receptor 3 (CR3) and binding of mannan to Toll-like receptor 4 (TLR4), resulting in receptor colocalization. Together, our in vitro and in vivo findings reveal a novel cross-species evasion mechanism by which C. albicans exploits a human miRNA to promote fungal growth and survival in the host. IMPORTANCE Over the last decade, communication between immune cells by extracellular vesicle-associated miRNAs has emerged as an important regulator of the coordinated immune response. Therefore, a thorough understanding of the conversation occurring via miRNAs, especially during infection, may provide novel insights into both the host reaction to the microbe as well as the microbial response. This study provides evidence that the pathogenic fungus C. albicans communicates with human monocytes and induces the release of a human miRNA that promotes fungal growth. This mechanism represents an unexpected cross-species interaction and implies that an inhibition of specific miRNAs offers new possibilities for the treatment of human fungal infections.


Assuntos
Exossomos , MicroRNAs , Humanos , Candida albicans/genética , Monócitos/metabolismo , MicroRNAs/genética , Exossomos/metabolismo
17.
Antimicrob Agents Chemother ; 54(5): 1855-63, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20231390

RESUMO

Numerous antibiotics have proven to be effective at ameliorating the clinical symptoms of urinary tract infections (UTIs), but recurrent and chronic infections continue to plague many individuals. Most UTIs are caused by strains of uropathogenic Escherichia coli (UPEC), which can form both extra- and intracellular biofilm-like communities within the bladder. UPEC also persist inside host urothelial cells in a more quiescent state, sequestered within late endosomal compartments. Here, we tested a panel of 17 different antibiotics, representing seven distinct functional classes, for their effects on the survival of the reference UPEC isolate UTI89 within both biofilms and host bladder urothelial cells. All but one of the tested antibiotics prevented UTI89 growth in broth culture, and most were at least modestly effective against bacteria present within in vitro-grown biofilms. In contrast, only a few of the antibiotics, including nitrofurantoin and the fluoroquinolones ciprofloxacin and sparfloxacin, were able to eliminate intracellular bacteria in bladder cell culture-based assays. However, in a mouse UTI model system in which these antibiotics reached concentrations in the urine specimens that far exceeded minimal inhibitory doses, UPEC reservoirs in bladder tissues were not effectively eradicated. We conclude that the persistence of UPEC within the bladder, regardless of antibiotic treatments, is likely facilitated by a combination of biofilm formation, entry of UPEC into a quiescent or semiquiescent state within host cells, and the stalwart permeability barrier function associated with the bladder urothelium.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Infecções Urinárias/tratamento farmacológico , Urotélio/microbiologia , Animais , Biofilmes/crescimento & desenvolvimento , Permeabilidade da Membrana Celular/fisiologia , Células Cultivadas , Farmacorresistência Bacteriana , Endossomos/microbiologia , Escherichia coli/crescimento & desenvolvimento , Infecções por Escherichia coli/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos CBA , Testes de Sensibilidade Microbiana , Recidiva , Bexiga Urinária/citologia , Infecções Urinárias/patologia , Urotélio/patologia
18.
mSphere ; 5(4)2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32817453

RESUMO

Aspergillus fumigatus is one of the most common airborne molds capable of causing mycoses and allergies in humans. During infection, fungal surface proteins mediate the first contact with the human immune system to evade immune responses or to induce hypersensitivity. Several methods have been established for surface proteomics (surfomics). Biotinylation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification of peptides is a particularly efficient method to identify the surface-exposed regions of proteins that potentially mediate interaction with the host. After biotinylation of surface proteins during spore germination, we detected 231 different biotinylated surface proteins (including several well-known proteins such as RodA, CcpA, and DppV; allergens; and heat shock proteins [HSPs]), as well as some previously undescribed surface proteins. The dynamic change of the surface proteome was illustrated by detection of a relatively high number of proteins exclusively at one developmental stage. Using immunofluorescence microscopy, we confirmed the surface localization of several HSPs of the HSP70 family, which may have moonlighting functions. Collectively, by comparing our data with data representative of previously published A. fumigatus surface proteomes, our study generated a comprehensive data set corresponding to the A. fumigatus surfome and uncovered the surface-exposed regions of many proteins on the surface of conidia or hyphae. These surface-exposed regions are candidates for direct interaction with host cells and may represent antigenic epitopes that either induce protective immune responses or mediate immune evasion. Thus, our data sets provided and compiled here represent reasonable immunotherapy and diagnostic targets for future investigations.IMPORTANCEAspergillus fumigatus is the most important airborne human-pathogenic mold, capable of causing both life-threatening invasive pulmonary aspergillosis in immunocompromised patients and allergy-inducing infections in individuals with atopic allergy. Despite its obvious medical relevance, timely diagnosis and efficient antifungal treatment of A. fumigatus infection remain major challenges. Proteins on the surface of conidia (asexually produced spores) and mycelium directly mediate host-pathogen interaction and also may serve as targets for diagnosis and immunotherapy. However, the similarity of protein sequences between A. fumigatus and other organisms, sometimes even including the human host, makes selection of targets for immunological-based studies difficult. Here, using surface protein biotinylation coupled with LC-MS/MS analysis, we identified hundreds of A. fumigatus surface proteins with exposed regions, further defining putative targets for possible diagnostic and immunotherapeutic design.


Assuntos
Aspergilose/diagnóstico , Aspergillus fumigatus/química , Proteínas Fúngicas/química , Proteínas de Membrana/química , Aspergillus fumigatus/genética , Biomarcadores/análise , Biotinilação , Cromatografia Líquida , Humanos , Proteoma , Proteômica , Espectrometria de Massas em Tandem
19.
mBio ; 11(2)2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32291301

RESUMO

Polymorphonuclear granulocytes (PMNs) are indispensable for controlling life-threatening fungal infections. In addition to various effector mechanisms, PMNs also produce extracellular vesicles (EVs). Their contribution to antifungal defense has remained unexplored. We reveal that the clinically important human-pathogenic fungus Aspergillus fumigatus triggers PMNs to release a distinct set of antifungal EVs (afEVs). Proteome analyses indicated that afEVs are enriched in antimicrobial proteins. The cargo and the release kinetics of EVs are modulated by the fungal strain confronted. Tracking of afEVs indicated that they associated with fungal cells and even entered fungal hyphae, resulting in alterations in the morphology of the fungal cell wall and dose-dependent antifungal effects. To assess as a proof of concept whether the antimicrobial proteins found in afEVs might contribute to growth inhibition of hyphae when present in the fungal cytoplasm, two human proteins enriched in afEVs, cathepsin G and azurocidin, were heterologously expressed in fungal hyphae. This led to reduced fungal growth relative to that of a control strain producing the human retinol binding protein 7. In conclusion, extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. This finding offers an intriguing, previously overlooked mechanism of antifungal defense against A. fumigatusIMPORTANCE Invasive fungal infections caused by the mold Aspergillus fumigatus are a growing concern in the clinic due to the increasing use of immunosuppressive therapies and increasing antifungal drug resistance. These infections result in high rates of mortality, as treatment and diagnostic options remain limited. In healthy individuals, neutrophilic granulocytes are critical for elimination of A. fumigatus from the host; however, the exact extracellular mechanism of neutrophil-mediated antifungal activity remains unresolved. Here, we present a mode of antifungal defense employed by human neutrophils against A. fumigatus not previously described. We found that extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. In the end, antifungal extracellular vesicle biology provides a significant step forward in our understanding of A. fumigatus host pathogenesis and opens up novel diagnostic and therapeutic possibilities.


Assuntos
Aspergillus fumigatus/crescimento & desenvolvimento , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/microbiologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Adulto , Peptídeos Catiônicos Antimicrobianos/genética , Aspergillus fumigatus/genética , Proteínas Sanguíneas/genética , Catepsina G/genética , Voluntários Saudáveis , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Hifas/genética , Hifas/crescimento & desenvolvimento , Masculino , Estudo de Prova de Conceito , Adulto Jovem
20.
mBio ; 9(5)2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279286

RESUMO

Aspergillus fumigatus is a common airborne fungal pathogen of humans and a significant source of mortality in immunocompromised individuals. Here, we provide the most extensive cell wall proteome profiling to date of A. fumigatus resting conidia, the fungal morphotype pertinent to first contact with the host. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified proteins within the conidial cell wall by hydrogen-fluoride (HF)-pyridine extraction and proteins exposed on the surface using a trypsin-shaving approach. One protein, designated conidial cell wall protein A (CcpA), was identified by both methods and was found to be nearly as abundant as hydrophobic rodlet layer-forming protein RodA. CcpA, an amphiphilic protein, like RodA, peaks in expression during sporulation on resting conidia. Despite high cell wall abundance, the cell surface structure of ΔccpA resting conidia appeared normal. However, trypsin shaving of ΔccpA conidia revealed novel surface-exposed proteins not detected on conidia of the wild-type strain. Interestingly, the presence of swollen ΔccpA conidia led to higher activation of neutrophils and dendritic cells than was seen with wild-type conidia and caused significantly less damage to epithelial cells in vitro In addition, virulence was highly attenuated when cortisone-treated, immunosuppressed mice were infected with ΔccpA conidia. CcpA-specific memory T cell responses were detectable in healthy human donors naturally exposed to A. fumigatus conidia, suggesting a role for CcpA as a structural protein impacting conidial immunogenicity rather than possessing a protein-intrinsic immunosuppressive effect. Together, these data suggest that CcpA serves as a conidial stealth protein by altering the conidial surface structure to minimize innate immune recognition.IMPORTANCE The mammalian immune system relies on recognition of pathogen surface antigens for targeting and clearance. In the absence of immune evasion strategies, pathogen clearance is rapid. In the case of Aspergillus fumigatus, the successful fungus must avoid phagocytosis in the lung to establish invasive infection. In healthy individuals, fungal spores are cleared by immune cells; however, in immunocompromised patients, clearance mechanisms are impaired. Here, using proteome analyses, we identified CcpA as an important fungal spore protein involved in pathogenesis. A. fumigatus lacking CcpA was more susceptible to immune recognition and prompt eradication and, consequently, exhibited drastically attenuated virulence. In infection studies, CcpA was required for virulence in infected immunocompromised mice, suggesting that it could be used as a possible immunotherapeutic or diagnostic target in the future. In summary, our report adds a protein to the list of those known to be critical to the complex fungal spore surface environment and, more importantly, identifies a protein important for conidial immunogenicity during infection.


Assuntos
Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Proteoma/análise , Células A549 , Animais , Aspergilose/imunologia , Parede Celular/química , Cromatografia Líquida , Células Dendríticas/imunologia , Endocitose , Células Epiteliais/imunologia , Feminino , Proteínas Fúngicas/genética , Humanos , Hospedeiro Imunocomprometido , Proteínas de Membrana/genética , Camundongos , Ativação de Neutrófilo , Esporos Fúngicos/patogenicidade , Linfócitos T/imunologia , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA