Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
PLoS Pathog ; 10(7): e1004295, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25078082

RESUMO

Intracellular acting protein exotoxins produced by bacteria and plants are important molecular determinants that drive numerous human diseases. A subset of these toxins, the cytolethal distending toxins (CDTs), are encoded by several Gram-negative pathogens and have been proposed to enhance virulence by allowing evasion of the immune system. CDTs are trafficked in a retrograde manner from the cell surface through the Golgi apparatus and into the endoplasmic reticulum (ER) before ultimately reaching the host cell nucleus. However, the mechanism by which CDTs exit the ER is not known. Here we show that three central components of the host ER associated degradation (ERAD) machinery, Derlin-2 (Derl2), the E3 ubiquitin-protein ligase Hrd1, and the AAA ATPase p97, are required for intoxication by some CDTs. Complementation of Derl2-deficient cells with Derl2:Derl1 chimeras identified two previously uncharacterized functional domains in Derl2, the N-terminal 88 amino acids and the second ER-luminal loop, as required for intoxication by the CDT encoded by Haemophilus ducreyi (Hd-CDT). In contrast, two motifs required for Derlin-dependent retrotranslocation of ERAD substrates, a conserved WR motif and an SHP box that mediates interaction with the AAA ATPase p97, were found to be dispensable for Hd-CDT intoxication. Interestingly, this previously undescribed mechanism is shared with the plant toxin ricin. These data reveal a requirement for multiple components of the ERAD pathway for CDT intoxication and provide insight into a Derl2-dependent pathway exploited by retrograde trafficking toxins.


Assuntos
Adenosina Trifosfatases/metabolismo , Toxinas Bacterianas/farmacologia , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenosina Trifosfatases/genética , Animais , Western Blotting , Células CHO , Membrana Celular/metabolismo , Cancroide/metabolismo , Cancroide/microbiologia , Cancroide/patologia , Cricetinae , Cricetulus , Regulação da Expressão Gênica/efeitos dos fármacos , Complexo de Golgi/metabolismo , Haemophilus ducreyi/crescimento & desenvolvimento , Haemophilus ducreyi/patogenicidade , Células HeLa , Humanos , Imunoprecipitação , Imunossupressores/farmacologia , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitina-Proteína Ligases/genética
2.
Proc Natl Acad Sci U S A ; 110(50): E4904-12, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24191014

RESUMO

Pathogenic microorganisms and toxins have evolved a variety of mechanisms to gain access to the host-cell cytosol and thereby exert virulent effects upon the host. One common mechanism of cellular entry requires trafficking to an acidified endosome, which promotes translocation across the host membrane. To identify small-molecule inhibitors that block this process, a library of 30,000 small molecules was screened for inhibitors of anthrax lethal toxin. Here we report that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone, the most active compound identified in the screen, inhibits intoxication by lethal toxin and blocks the entry of multiple other acid-dependent bacterial toxins and viruses into mammalian cells. This compound, which we named EGA, also delays lysosomal targeting and degradation of the EGF receptor, indicating that it targets host-membrane trafficking. In contrast, EGA does not block endosomal recycling of transferrin, retrograde trafficking of ricin, phagolysosomal trafficking, or phagosome permeabilization by Franciscella tularensis. Furthermore, EGA does not neutralize acidic organelles, demonstrating that its mechanism of action is distinct from pH-raising agents such as ammonium chloride and bafilomycin A1. EGA is a powerful tool for the study of membrane trafficking and represents a class of host-targeted compounds for therapeutic development to treat infectious disease.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Endossomos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Semicarbazonas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Aminas , Animais , Transporte Biológico/fisiologia , Caspase 1/metabolismo , Cromatografia Líquida , Endossomos/fisiologia , Citometria de Fluxo , Células HeLa , Humanos , Macrófagos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Estrutura Molecular , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Semicarbazonas/química , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
3.
J Biol Chem ; 288(11): 7492-7505, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23306199

RESUMO

The cytolethal distending toxins (CDTs) compose a subclass of intracellularly acting genotoxins produced by many Gram-negative pathogenic bacteria that disrupt the normal progression of the eukaryotic cell cycle. Here, the intoxication mechanisms of CDTs from Escherichia coli (Ec-CDT) and Haemophilus ducreyi (Hd-CDT), which share limited amino acid sequence homology, were directly compared. Ec-CDT and Hd-CDT shared comparable in vitro DNase activities of the CdtB subunits, saturable cell surface binding with comparable affinities, and the requirement for an intact Golgi complex to induce cell cycle arrest. In contrast, disruption of endosome acidification blocked Hd-CDT-mediated cell cycle arrest and toxin transport to the endoplasmic reticulum and nucleus, while having no effects on Ec-CDT. Phosphorylation of the histone protein H2AX, as well as nuclear localization, was inhibited for Hd-CdtB, but not Ec-CdtB, in cells expressing dominant negative Rab7 (T22N), suggesting that Hd-CDT, but not Ec-CDT, is trafficked through late endosomal vesicles. In support of this idea, significantly more Hd-CdtB than Ec-CdtB co-localized with Rab9, which is enriched in late endosomal compartments. Competitive binding studies suggested that Ec-CDT and Hd-CDT bind to discrete cell surface determinants. These results suggest that Ec-CDT and Hd-CDT are transported within cells by distinct pathways, possibly mediated by their interaction with different receptors at the cell surface.


Assuntos
Toxinas Bacterianas/metabolismo , Escherichia coli/metabolismo , Haemophilus ducreyi/metabolismo , Animais , Biotinilação , Células CHO , Células CACO-2 , Ciclo Celular , Núcleo Celular/metabolismo , Clonagem Molecular , Cricetinae , Desoxirribonucleases/metabolismo , Regulação Bacteriana da Expressão Gênica , Células HeLa , Histonas/química , Histonas/metabolismo , Humanos , Transporte Proteico , Proteínas Recombinantes/química
4.
Proc Natl Acad Sci U S A ; 108(38): 16032-7, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21903925

RESUMO

A number of pathogenic bacteria target mitochondria to modulate the host's apoptotic machinery. Studies here revealed that infection with the human gastric pathogen Helicobacter pylori disrupts the morphological dynamics of mitochondria as a mechanism to induce host cell death. The vacuolating cytotoxin A (VacA) is both essential and sufficient for inducing mitochondrial network fragmentation through the mitochondrial recruitment and activation of dynamin-related protein 1 (Drp1), which is a critical regulator of mitochondrial fission within cells. Inhibition of Drp1-induced mitochondrial fission within VacA-intoxicated cells inhibited the activation of the proapoptotic Bcl-2-associated X (Bax) protein, permeabilization of the mitochondrial outer membrane, and cell death. Our data reveal a heretofore unrecognized strategy by which a pathogenic microbe engages the host's apoptotic machinery.


Assuntos
Apoptose , Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Mitocôndrias/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Citocromos c/metabolismo , Dinaminas , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Citometria de Fluxo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Helicobacter pylori/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/microbiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
5.
Proc Natl Acad Sci U S A ; 108(34): 14109-14, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21844375

RESUMO

Aerobic respiration in bacteria, Archaea, and mitochondria is performed by oxygen reductase members of the heme-copper oxidoreductase superfamily. These enzymes are redox-driven proton pumps which conserve part of the free energy released from oxygen reduction to generate a proton motive force. The oxygen reductases can be divided into three main families based on evolutionary and structural analyses (A-, B- and C-families), with the B- and C-families evolving after the A-family. The A-family utilizes two proton input channels to transfer protons for pumping and chemistry, whereas the B- and C-families require only one. Generally, the B- and C-families also have higher apparent oxygen affinities than the A-family. Here we use whole cell proton pumping measurements to demonstrate differential proton pumping efficiencies between representatives of the A-, B-, and C-oxygen reductase families. The A-family has a coupling stoichiometry of 1 H(+)/e(-), whereas the B- and C-families have coupling stoichiometries of 0.5 H(+)/e(-). The differential proton pumping stoichiometries, along with differences in the structures of the proton-conducting channels, place critical constraints on models of the mechanism of proton pumping. Most significantly, it is proposed that the adaptation of aerobic respiration to low oxygen environments resulted in a concomitant reduction in energy conservation efficiency, with important physiological and ecological consequences.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Aerobiose/efeitos dos fármacos , Bactérias/metabolismo , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Oxigênio/farmacologia , Bombas de Próton/metabolismo , Rhodobacter capsulatus/efeitos dos fármacos , Rhodobacter capsulatus/metabolismo
6.
Front Cell Infect Microbiol ; 14: 1366193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292462

RESUMO

[This corrects the article DOI: 10.3389/fcimb.2023.1289359.].

7.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826216

RESUMO

Macroautophagy is thought to have a critical role in shaping and refining cellular proteostasis in eukaryotic cells recovering from DNA damage. Here, we report a mechanism by which autophagy is suppressed in cells exposed to bacterial toxin-, chemical-, or radiation-mediated sources of genotoxicity. Autophagy suppression is directly linked to cellular responses to DNA damage, and specifically the stabilization of the tumor suppressor p53, which is both required and sufficient for regulating the ubiquitination and proteasome-dependent reduction in cellular pools of microtubule-associated protein 1 light chain 3 (LC3A/B), a key precursor of autophagosome biogenesis and maturation, in both epithelial cells and an ex vivo organoid model. Our data indicate that suppression of autophagy, through a newly identified p53-proteasome-LC3 axis, is a conserved cellular response to multiple sources of genotoxicity. Such a mechanism could potentially be important for realigning proteostasis in cells undergoing DNA damage repair.

8.
J Cell Biochem ; 114(10): 2284-92, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23606331

RESUMO

The Helicobacter pylori virulence factor CagA targets a variety of host proteins to alter different cellular responses, including the induction of pro-inflammatory cytokines. We have previously shown that CagA-facilitated lysine 63-linked ubiquitination of TAK1 is essential for the H. pylori-induced NF-κB activation and the expression of proinflammatory cytokines. However, the molecular mechanism for TAK1 ubiquitination and activation in H. pylori-mediated NF-κB activation remains elusive. Here, we identify lysine 158 of TAK1 as the key residue undergoing lysine 63-linked ubiquitination in response to H. pylori infection. Mutation of lysine 158 to arginine prevents the ubiquitination of TAK1 and impairs H. pylori-induced TAK1 and NF-κB activation. Moreover, we demonstrate that E2 ubiquitin conjugating enzyme Ubc13 is involved in H. pylori-mediated TAK1 ubiquitination. Suppressing the activity of Ubc13 by a dominant-negative mutant or siRNA abolishes CagA-facilitated and H. pylori-induced TAK1 and NF-κB activation. These findings further underscore the importance of lysine 63-linked ubiquitination of TAK1 in H. pylori-induced NF-κB activation and NF-κB-mediated inflammatory response.


Assuntos
Helicobacter pylori/patogenicidade , Lisina/metabolismo , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Interações Hospedeiro-Patógeno , Humanos , Immunoblotting , Imunoprecipitação , Reação em Cadeia da Polimerase em Tempo Real , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação/genética
9.
Gastroenterology ; 142(5): 1160-71, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22333951

RESUMO

BACKGROUND & AIMS: The Helicobacter pylori toxin vacuolating cytotoxin (VacA) promotes gastric colonization, and its presence (VacA(+)) is associated with more-severe disease. The exact mechanisms by which VacA contributes to infection are unclear. We previously found that limited exposure to VacA induces autophagy of gastric cells, which eliminates the toxin; we investigated whether autophagy serves as a defense mechanism against H pylori infection. METHODS: We investigated the effect of VacA on autophagy in human gastric epithelial cells and primary gastric cells from mice. Expression of p62, a marker of autophagy, was also assessed in gastric tissues from patients infected with toxigenic (VacA(+)) or nontoxigenic strains. We analyzed the effect of VacA on autophagy in peripheral blood monocytes obtained from subjects with different genotypes of ATG16L1, which regulates autophagy. We performed genotyping for ATG16L1 in 2 cohorts of infected and uninfected subjects. RESULTS: Prolonged exposure of human gastric epithelial cells and mouse gastric cells to VacA disrupted induction of autophagy in response to the toxin, because the cells lacked cathepsin D in autophagosomes. Loss of autophagy resulted in the accumulation of p62 and reactive oxygen species. Gastric biopsy samples from patients infected with VacA(+), but not nontoxigenic strains of H pylori, had increased levels of p62. Peripheral blood monocytes isolated from individuals with polymorphisms in ATG16L1 that increase susceptibility to Crohn's disease had reduced induction of autophagy in response to VacA(+) compared to cells from individuals that did not have these polymorphisms. The presence of the ATG16L1 Crohn's disease risk variant increased susceptibility to H pylori infection in 2 separate cohorts. CONCLUSIONS: Autophagy protects against infection with H pylori; the toxin VacA disrupts autophagy to promote infection, which could contribute to inflammation and eventual carcinogenesis.


Assuntos
Autofagia/fisiologia , Proteínas de Bactérias/fisiologia , Infecções por Helicobacter/etiologia , Helicobacter pylori , Alelos , Animais , Proteínas de Bactérias/genética , Catepsina D/fisiologia , Doença de Crohn/etiologia , Doença de Crohn/genética , Genótipo , Humanos , Imunidade Inata , Camundongos , Fagossomos/fisiologia
10.
Adv Microbiol ; 13(8): 399-419, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37654621

RESUMO

The Helicobacter pylori vacuolating cytotoxin (VacA) is an intracellular, mitochondrial-targeting exotoxin that rapidly causes mitochondrial dysfunction and fragmentation. Although VacA targeting of mitochondria has been reported to alter overall cellular metabolism, there is little known about the consequences of extended exposure to the toxin. Here, we describe studies to address this gap in knowledge, which have revealed that mitochondrial dysfunction and fragmentation are followed by a time-dependent recovery of mitochondrial structure, mitochondrial transmembrane potential, and cellular ATP levels. Cells exposed to VacA also initially demonstrated a reduction in oxidative phosphorylation, as well as increase in compensatory aerobic glycolysis. These metabolic alterations were reversed in cells with limited toxin exposure, congruent with the recovery of mitochondrial transmembrane potential and the absence of cytochrome c release from the mitochondria. Taken together, these results are consistent with a model that mitochondrial structure and function are restored in VacA-intoxicated cells.

11.
Front Cell Infect Microbiol ; 13: 1289359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035327

RESUMO

Cytolethal distending toxins (CDTs) are intracellular-acting bacterial genotoxins generated by a diverse group of mucocutaneous human pathogens. CDTs must successfully bind to the plasma membrane of host cells in order to exert their modulatory effects. Maximal toxin activity requires all three toxin subunits, CdtA, CdtB, and CdtC, which, based primarily on high-resolution structural data, are believed to preassemble into a tripartite complex necessary for toxin activity. However, biologically active toxin has not been experimentally demonstrated to require assembly of the three subunits into a heterotrimer. Here, we experimentally compared concentration-dependent subunit interactions and toxin cellular activity of the Campylobacter jejuni CDT (Cj-CDT). Co-immunoprecipitation and dialysis retention experiments provided evidence for the presence of heterotrimeric toxin complexes, but only at concentrations of Cj-CdtA, Cj-CdtB, and Cj-CdtC several logs higher than required for Cj-CDT-mediated arrest of the host cell cycle at the G2/M interface, which is triggered by the endonuclease activity associated with the catalytic Cj-CdtB subunit. Microscale thermophoresis confirmed that Cj-CDT subunit interactions occur with low affinity. Collectively, our data suggest that at the lowest concentrations of toxin sufficient for arrest of cell cycle progression, mixtures of Cj-CdtA, Cj-CdtB, and Cj-CdtC consist primarily of non-interacting, subunit monomers. The lack of congruence between toxin tripartite structure and cellular activity suggests that the widely accepted model that CDTs principally intoxicate host cells as preassembled heterotrimeric structures should be revisited.


Assuntos
Toxinas Bacterianas , Campylobacter jejuni , Humanos , Toxinas Bacterianas/metabolismo , Campylobacter jejuni/metabolismo , Ciclo Celular
12.
mBio ; 14(5): e0211723, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37815365

RESUMO

IMPORTANCE: Persistent human gastric infection with Helicobacter pylori is the single most important risk factor for development of gastric malignancy, which is one of the leading causes of cancer-related deaths worldwide. An important virulence factor for Hp colonization and severity of gastric disease is the protein exotoxin VacA, which is secreted by the bacterium and modulates functional properties of gastric cells. VacA acts by damaging mitochondria, which impairs host cell metabolism through impairment of energy production. Here, we demonstrate that intoxicated cells have the capacity to detect VacA-mediated damage, and orchestrate the repair of mitochondrial function, thereby restoring cellular health and vitality. This study provides new insights into cellular recognition and responses to intracellular-acting toxin modulation of host cell function, which could be relevant for the growing list of pathogenic microbes and viruses identified that target mitochondria as part of their virulence strategies.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/metabolismo , Proteínas de Bactérias/metabolismo , Mitocôndrias/metabolismo , Linhagem Celular , Fatores de Virulência/metabolismo , Infecções por Helicobacter/microbiologia
13.
Proc Natl Acad Sci U S A ; 106(47): 19998-20003, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19897724

RESUMO

Modification of eukaryotic proteins is a powerful strategy used by pathogenic bacteria to modulate host cells during infection. Previously, we demonstrated that Helicobacter pylori modify an unidentified protein within mammalian cell lysates in a manner consistent with the action of a bacterial ADP-ribosylating toxin. Here, we identified the modified eukaryotic factor as the abundant nuclear factor poly(ADP-ribose) polymerase-1 (PARP-1), which is important in the pathologies of several disease states typically associated with chronic H. pylori infection. However, rather than being ADP-ribosylated by an H. pylori toxin, the intrinsic poly(ADP-ribosyl) polymerase activity of PARP-1 is activated by a heat- and protease-sensitive H. pylori factor, resulting in automodification of PARP-1 with polymers of poly(ADP-ribose) (PAR). Moreover, during infection of gastric epithelial cells, H. pylori induce intracellular PAR-production by a PARP-1-dependent mechanism. Activation of PARP-1 by a pathogenic bacterium represents a previously unrecognized strategy for modulating host cell signaling during infection.


Assuntos
Helicobacter pylori/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Adenosina Difosfato Ribose/metabolismo , Animais , Domínio Catalítico , Ativação Enzimática , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Mucosa Gástrica/citologia , Células HeLa , Infecções por Helicobacter/metabolismo , Humanos , Camundongos , Camundongos Knockout , Radioisótopos de Fósforo/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética
14.
J Biol Chem ; 285(24): 18199-207, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20385557

RESUMO

Cytolethal distending toxins (CDTs) are tripartite protein exotoxins produced by a diverse group of pathogenic Gram-negative bacteria. Based on their ability to induce DNA damage, cell cycle arrest, and apoptosis of cultured cells, CDTs are proposed to enhance virulence by blocking cellular division and/or directly killing epithelial and immune cells. Despite the widespread distribution of CDTs among several important human pathogens, our understanding of how these toxins interact with host cells is limited. Here we demonstrate that CDTs from Haemophilus ducreyi, Aggregatibacter actinomycetemcomitans, Escherichia coli, and Campylobacter jejuni differ in their abilities to intoxicate host cells with defined defects in host factors previously implicated in CDT binding, including glycoproteins, and glycosphingolipids. The absence of cell surface sialic acid sensitized cells to intoxication by three of the four CDTs tested. Surprisingly, fucosylated N-linked glycans and glycolipids, previously implicated in CDT-host interactions, were not required for intoxication by any of the CDTs tested. Finally, altering host-cellular cholesterol, also previously implicated in CDT binding, affected intoxication by only a subset of CDTs tested. The findings presented here provide insight into the molecular and cellular basis of CDT-host interactions.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Colesterol/química , Polissacarídeos/química , Animais , Células CHO , Campylobacter jejuni/metabolismo , Colesterol/metabolismo , Cricetinae , Cricetulus , Dano ao DNA , Escherichia coli/metabolismo , Glicolipídeos/química , Bactérias Gram-Negativas/metabolismo , Haemophilus ducreyi/metabolismo , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Ligação Proteica
15.
BMC Microbiol ; 11: 46, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21356113

RESUMO

BACKGROUND: During inhalational anthrax, internalization of Bacillus anthracis spores by host cells within the lung is believed to be a key step for initiating the transition from the localized to disseminated stages of infection. Despite compelling in vivo evidence that spores remain dormant within the bronchioalveolar spaces of the lungs, and germinate only after uptake into host cells, most in vitro studies of infection have been conducted under conditions that promote rapid germination of spores within the culture medium. RESULTS: Using an in vitro model of infection, we evaluated the influence of the germination state of B. anthracis spores, as controlled by defined culture conditions, on the outcome of infection. Spores prepared from B. anthracis Sterne 7702 germinated in a variety of common cell culture media supplemented with fetal bovine serum (FBS) while, in the absence of FBS, germination was strictly dependent on medium composition. RAW264.7 macrophage-like cells internalized spores to the same extent in either germinating or non-germinating media. However, significantly more viable, intracellular B. anthracis were recovered from cells infected under non-germinating conditions compared to germinating conditions. At the same time, RAW264.7 cells demonstrated a significant loss in viability when infected under non-germinating conditions. CONCLUSIONS: These results suggest that the outcome of host cell infection is sensitive to the germination state of spores at the time of uptake. Moreover, this study demonstrates the efficacy of studying B. anthracis spore infection of host cells within a defined, non-germinating, in vitro environment.


Assuntos
Bacillus anthracis/crescimento & desenvolvimento , Meios de Cultura/química , Macrófagos/microbiologia , Animais , Bacillus anthracis/fisiologia , Bovinos , Linhagem Celular , Sobrevivência Celular , Meios de Cultivo Condicionados/química , Macrófagos/metabolismo , Camundongos , Viabilidade Microbiana , Soro/química , Esporos Bacterianos/crescimento & desenvolvimento
16.
Cell Microbiol ; 12(10): 1517-33, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20545942

RESUMO

Plasma membrane sphingomyelin (SM) binds the Helicobacter pylori vacuolating toxin (VacA) to the surface of epithelial cells. To evaluate the importance of SM for VacA cellular entry, we characterized toxin uptake and trafficking within cells enriched with synthetic variants of SM, whose intracellular trafficking properties are strictly dependent on the acyl chain lengths of their sphingolipid backbones. While toxin binding to the surface of cells was independent of acyl chain length, cells enriched with 12- or 18-carbon acyl chain variants of SM (e.g. C12-SM or C18-SM) were more sensitive to VacA, as indicated by toxin-induced cellular vacuolation, than those enriched with shorter 2- or 6-carbon variants (e.g. C2-SM or C6-SM). In C18-SM-enriched cells, VacA was taken into cells by a previously described Cdc42-dependent pinocytic mechanism, localized initially to GPI-enriched vesicles, and ultimately trafficked to Rab7/Lamp1 compartments. In contrast, within C2-SM-enriched cells, VacA was taken up at a slower rate by a Cdc42-independent mechanism and trafficked to Rab11 compartments. VacA-associated predominantly with detergent-resistant membranes (DRMs) in cells enriched with C18-SM, but predominantly with non-DRMs in C2-SM-enriched cells. These results suggest that SM is required for targeting VacA to membrane rafts important for subsequent Cdc42-dependent pinocytic cellular entry.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/fisiologia , Células Epiteliais/fisiologia , Helicobacter pylori/patogenicidade , Esfingomielinas/metabolismo , Fatores de Virulência/metabolismo , Linhagem Celular , Membrana Celular/química , Células Epiteliais/química , Humanos , Pinocitose , Transporte Proteico , Proteína cdc42 de Ligação ao GTP/metabolismo
17.
EMBO Rep ; 10(11): 1242-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19820695

RESUMO

Helicobacter pylori-initiated chronic gastritis is characterized by the cag pathogenicity island-dependent upregulation of proinflammatory cytokines, which is largely mediated by the transcription factor nuclear factor (NF)-kappaB. However, the cag pathogenicity island-encoded proteins and cellular signalling molecules that are involved in H. pylori-induced NF-kappaB activation and inflammatory response remain unclear. Here, we show that H. pylori virulence factor CagA and host protein transforming growth factor-beta-activated kinase 1 (TAK1) are essential for H. pylori-induced activation of NF-kappaB. CagA physically associates with TAK1 and enhances its activity and TAK1-induced NF-kappaB activation through the tumour necrosis factor receptor-associated factor 6-mediated, Lys 63-linked ubiquitination of TAK1. These findings show that polyubiquitination of TAK1 regulates the activation of NF-kappaB, which in turn is used by H. pylori CagA for the H. pylori-induced inflammatory response.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Lisina/química , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação , Camundongos , Ubiquitina/química , Ubiquitina/metabolismo
18.
Front Cell Infect Microbiol ; 11: 664221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854985

RESUMO

Human lymphocytes exposed to Aggregatibacter actinomycetemcomitans (Aa) cytolethal distending toxin (Cdt) undergo cell cycle arrest and apoptosis. In previous studies, we demonstrated that the active Cdt subunit, CdtB, is a potent phosphatidylinositol (PI) 3,4,5-triphosphate phosphatase. Moreover, AaCdt-treated cells exhibit evidence of PI-3-kinase (PI-3K) signaling blockade characterized by reduced levels of PIP3, pAkt, and pGSK3ß. We have also demonstrated that PI-3K blockade is a requisite of AaCdt-induced toxicity in lymphocytes. In this study, we extended our observations to include assessment of Cdts from Haemophilus ducreyi (HdCdt) and Campylobacter jejuni (CjCdt). We now report that the CdtB subunit from HdCdt and CjCdt, similar to that of AaCdt, exhibit potent PIP3 phosphatase activity and that Jurkat cells treated with these Cdts exhibit PI-3K signaling blockade: reduced levels of pAkt and pGSK3ß. Since non-phosphorylated GSK3ß is the active form of this kinase, we compared Cdts for dependence on GSK3ß activity. Two GSK3ß inhibitors were employed, LY2090314 and CHIR99021; both inhibitors blocked the ability of Cdts to induce cell cycle arrest. We have previously demonstrated that AaCdt induces increases in the CDK inhibitor, p21CIP1/WAF1, and, further, that this was a requisite for toxin-induced cell death via apoptosis. We now demonstrate that HdCdt and CjCdt also share this requirement. It is also noteworthy that p21CIP1/WAF1 was not involved in the ability of the three Cdts to induce cell cycle arrest. Finally, we demonstrate that, like AaCdt, HdCdt is dependent upon the host cell protein, cellugyrin, for its toxicity (and presumably internalization of CdtB); CjCdt was not dependent upon this protein. The implications of these findings as they relate to Cdt's molecular mode of action are discussed.


Assuntos
Campylobacter jejuni , Haemophilus ducreyi , Toxinas Bacterianas , Humanos , Fosfatidilinositóis , Monoéster Fosfórico Hidrolases , Polifosfatos
19.
PLoS Pathog ; 4(5): e1000073, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18497859

RESUMO

The vacuolating cytotoxin (VacA) of the gastric pathogen Helicobacter pylori binds and enters epithelial cells, ultimately resulting in cellular vacuolation. Several host factors have been reported to be important for VacA function, but none of these have been demonstrated to be essential for toxin binding to the plasma membrane. Thus, the identity of cell surface receptors critical for both toxin binding and function has remained elusive. Here, we identify VacA as the first bacterial virulence factor that exploits the important plasma membrane sphingolipid, sphingomyelin (SM), as a cellular receptor. Depletion of plasma membrane SM with sphingomyelinase inhibited VacA-mediated vacuolation and significantly reduced the sensitivity of HeLa cells, as well as several other cell lines, to VacA. Further analysis revealed that SM is critical for VacA interactions with the plasma membrane. Restoring plasma membrane SM in cells previously depleted of SM was sufficient to rescue both toxin vacuolation activity and plasma membrane binding. VacA association with detergent-resistant membranes was inhibited in cells pretreated with SMase C, indicating the importance of SM for VacA association with lipid raft microdomains. Finally, VacA bound to SM in an in vitro ELISA assay in a manner competitively inhibited by lysenin, a known SM-binding protein. Our results suggest a model where VacA may exploit the capacity of SM to preferentially partition into lipid rafts in order to access the raft-associated cellular machinery previously shown to be required for toxin entry into host cells.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Helicobacter pylori/fisiologia , Interações Hospedeiro-Patógeno , Microdomínios da Membrana/metabolismo , Esfingomielinas/metabolismo , Membrana Celular/metabolismo , Relação Dose-Resposta a Droga , Células HeLa , Helicobacter pylori/patogenicidade , Humanos , Modelos Biológicos , Proteínas Recombinantes , Esfingomielina Fosfodiesterase/farmacologia , Toxinas Biológicas/farmacologia , Fatores de Virulência
20.
Med Res Arch ; 8(3)2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37655156

RESUMO

Chronic Helicobacter pylori (Hp) infection is considered to be the single most important risk factor for the development of gastric adenocarcinoma in humans, which is a leading cause of cancer-related death worldwide. Nonetheless, Hp infection does not always progress to malignancy, and, gastric adenocarcinoma can occur in the absence of detectable Hp carriage, highlighting the complex and multifactorial nature of gastric cancer. Here we review known contributors to gastric malignancy, including Hp virulence factors, host genetic variation, and multiple environmental variables. In addition, we assess emerging evidence that resident gastric microflora in humans might impact disease progression in Hp-infected individuals. Molecular approaches for microbe identification have revealed differences in the gastric microbiota composition between cancer and non-cancerous patients, as well as infected and uninfected individuals. Although the reasons underlying differences in microbial community structures are not entirely understood, gastric atrophy and hypochlorhydria that accompany chronic Hp infection may be a critical driver of gastric dysbiosis that promote colonization of microbes that contribute to increased risk of malignancy. Defining the importance and role of the gastric microbiota as a potential risk factor for Hp-associated gastric cancer is a vital and exciting area of current research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA