Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Small ; 20(22): e2310364, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38109153

RESUMO

Ni-free Ti-based bulk metallic glasses (BMGs) are exciting materials for biomedical applications because of their outstanding biocompatibility and advantageous mechanical properties. The glassy nature of BMGs allows them to be shaped and patterned via thermoplastic forming (TPF). This work demonstrates the versatility of the TPF technique to create micro- and nano-patterns and hierarchical structures on Ti40Zr10Cu34Pd14Sn2 BMG. Particularly, a hierarchical structure fabricated by a two-step TPF process integrates 400 nm hexagonal close-packed protrusions on 2.5 µm square protuberances while preserving the advantageous mechanical properties from the as-cast material state. The correlations between thermal history, structure, and mechanical properties are explored. Regarding biocompatibility, Ti40Zr10Cu34Pd14Sn2 BMGs with four surface topographies (flat, micro-patterned, nano-patterned, and hierarchical-structured surfaces) are investigated using Saos-2 cell lines. Alamar Blue assay and live/dead analysis show that all tested surfaces have good cell proliferation and viability. Patterned surfaces are observed to promote the formation of longer filopodia on the edge of the cytoskeleton, leading to star-shaped and dendritic cell morphologies compared with the flat surface. In addition to potential implant applications, TPF-patterned Ti-BMGs enable a high level of order and design flexibility on the surface topography, expanding the available toolbox for studying cell behavior on rigid and ordered surfaces.

2.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982766

RESUMO

Scaffolds made of degradable polymers, such as collagen, polyesters or polysaccharides, are promising matrices for fabrication of bioartificial vascular grafts or patches. In this study, collagen isolated from porcine skin was processed into a gel, reinforced with collagen particles and with incorporated adipose tissue-derived stem cells (ASCs). The cell-material constructs were then incubated in a DMEM medium with 2% of FS (DMEM_part), with added polyvinylalcohol nanofibers (PVA_part sample), and for ASCs differentiation towards smooth muscle cells (SMCs), the medium was supplemented either with human platelet lysate released from PVA nanofibers (PVA_PL_part) or with TGF-ß1 + BMP-4 (TGF + BMP_part). The constructs were further endothelialised with human umbilical vein endothelial cells (ECs). The immunofluorescence staining of alpha-actin and calponin, and von Willebrand factor, was performed. The proteins involved in cell differentiation, the extracellular matrix (ECM) proteins, and ECM remodelling proteins were evaluated by mass spectrometry on day 12 of culture. Mechanical properties of the gels with ASCs were measured via an unconfined compression test on day 5. Gels evinced limited planar shrinkage, but it was higher in endothelialised TGF + BMP_part gel. Both PVA_PL_part samples and TGF + BMP_part samples supported ASC growth and differentiation towards SMCs, but only PVA_PL_part supported homogeneous endothelialisation. Young modulus of elasticity increased in all samples compared to day 0, and PVA_PL_part gel evinced a slightly higher ratio of elastic energy. The results suggest that PVA_PL_part collagen construct has the highest potential to remodel into a functional vascular wall.


Assuntos
Tecido Adiposo , Colágeno , Animais , Suínos , Humanos , Células Cultivadas , Colágeno/metabolismo , Diferenciação Celular , Células-Tronco/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Géis/metabolismo , Engenharia Tecidual/métodos
3.
Mar Drugs ; 20(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36286439

RESUMO

Major challenges facing clinicians treating burn wounds are the lack of integration of treatment to wound, inadequate mechanical properties of treatments, and high infection rates which ultimately lead to poor wound resolution. Electrospun chitosan membranes (ESCM) are gaining popularity for use in tissue engineering applications due to their drug loading ability, biocompatibility, biomimetic fibrous structure, and antimicrobial characteristics. This work aims to modify ESCMs for improved performance in burn wound applications by incorporating elastin and magnesium-phosphate particles (MgP) to improve mechanical and bioactive properties. The following ESCMs were made to evaluate the individual components' effects; (C: chitosan, CE: chitosan-elastin, CMg: chitosan-MgP, and CEMg: chitosan-elastin-MgP). Membrane properties analyzed were fiber size and structure, hydrophilic properties, elastin incorporation, MgP incorporation and in vitro release, mechanical properties, degradation profiles, and in vitro cytocompatibility with NIH3T3 fibroblasts. The addition of both elastin and MgP increased the average fiber diameter of CE (~400 nm), CMg (~360 nm), and CEMg (565 nm) compared to C (255 nm). Water contact angle analysis showed elastin incorporated membranes (CE and CEMg) had increased hydrophilicity (~50°) compared to the other groups (C and CMg, ~110°). The results from the degradation study showed mass retention of ~50% for C and CMg groups, compared to ~ 30% seen in CE and CEMg after 4 weeks in a lysozyme/PBS solution. CMg and CEMg exhibited burst-release behavior of ~6 µg/ml or 0.25 mM magnesium within 72 h. In vitro analysis with NIH3T3 fibroblasts showed CE and CEMg groups had superior cytocompatibility compared to C and CMg. This work has demonstrated the successful incorporation of elastin and MgP into ESCMs and allows for future studies on burn wound applications.


Assuntos
Anti-Infecciosos , Queimaduras , Quitosana , Nanofibras , Animais , Camundongos , Anti-Infecciosos/farmacologia , Quitosana/química , Elastina , Magnésio , Muramidase/farmacologia , Nanofibras/química , Células NIH 3T3 , Fosfatos , Cicatrização
4.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008860

RESUMO

Nanogenerators are interesting for biomedical applications, with a great potential for electrical stimulation of excitable cells. Piezoelectric ZnO nanosheets present unique properties for tissue engineering. In this study, nanogenerator arrays based on ZnO nanosheets are fabricated on transparent coverslips to analyse the biocompatibility and the electromechanical interaction with two types of muscle cells, smooth and skeletal. Both cell types adhere, proliferate and differentiate on the ZnO nanogenerators. Interestingly, the amount of Zn ions released over time from the nanogenerators does not interfere with cell viability and does not trigger the associated inflammatory response, which is not triggered by the nanogenerators themselves either. The local electric field generated by the electromechanical nanogenerator-cell interaction stimulates smooth muscle cells by increasing cytosolic calcium ions, whereas no stimulation effect is observed on skeletal muscle cells. The random orientation of the ZnO nanogenerators, avoiding an overall action potential aligned along the muscle fibre, is hypothesised to be the cause of the cell-type dependent response. This demonstrates the need of optimizing the nanogenerator morphology, orientation and distribution according to the potential biomedical use. Thus, this study demonstrates the cell-scale stimulation triggered by biocompatible piezoelectric nanogenerators without using an external source on smooth muscle cells, although it remarks the cell type-dependent response.


Assuntos
Materiais Biocompatíveis/química , Fontes de Energia Elétrica , Músculo Esquelético/citologia , Miócitos de Músculo Liso/citologia , Nanotecnologia , Animais , Cálcio/metabolismo , Linhagem Celular , Forma Celular , Citocinas/metabolismo , Estimulação Elétrica , Análise de Elementos Finitos , Íons , Macrófagos/metabolismo , Camundongos , Fatores de Tempo , Zinco/análise , Óxido de Zinco/química
5.
Int J Mol Sci ; 21(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322781

RESUMO

Amine-coated biodegradable materials based on synthetic polymers have a great potential for tissue remodeling and regeneration because of their excellent processability and bioactivity. In the present study, we have investigated the influence of various chemical compositions of amine plasma polymer (PP) coatings and the influence of the substrate morphology, represented by polystyrene culture dishes and polycaprolactone nanofibers (PCL NFs), on the behavior of vascular smooth muscle cells (VSMCs). Although all amine-PP coatings improved the initial adhesion of VSMCs, 7-day long cultivation revealed a clear preference for the coating containing about 15 at.% of nitrogen (CPA-33). The CPA-33 coating demonstrated the ideal combination of good water stability, a sufficient amine group content, and favorable surface wettability and morphology. The nanostructured morphology of amine-PP-coated PCL NFs successfully slowed the proliferation rate of VSMCs, which is essential in preventing restenosis of vascular replacements in vivo. At the same time, CPA-33-coated PCL NFs supported the continuous proliferation of VSMCs during 7-day long cultivation, with no significant increase in cytokine secretion by RAW 264.7 macrophages. The CPA-33 coating deposited on biodegradable PCL NFs therefore seems to be a promising material for manufacturing small-diameter vascular grafts, which are still lacking on the current market.


Assuntos
Aminas/química , Materiais Revestidos Biocompatíveis/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Nanofibras/química , Plasma/química , Polímeros/química , Aminas/efeitos adversos , Aminas/imunologia , Aminas/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/imunologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/efeitos adversos , Materiais Revestidos Biocompatíveis/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/crescimento & desenvolvimento , Miócitos de Músculo Liso/metabolismo , Nanofibras/efeitos adversos , Espectroscopia Fotoeletrônica , Plasma/imunologia , Poliésteres/química , Polímeros/efeitos adversos , Polímeros/farmacologia , Células RAW 264.7 , Ratos , Propriedades de Superfície/efeitos dos fármacos , Alicerces Teciduais/efeitos adversos , Alicerces Teciduais/química
6.
Nanoscale ; 16(4): 1924-1941, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38170860

RESUMO

Skin wound healing is a complex physiological process that involves various cell types, growth factors, cytokines, and other bioactive compounds. In this study, a novel dual-function multilayered nanofibrous membrane is developed for chronic wound application. The membrane is composed of five alternating layers of polycaprolactone (PCL) and poly (vinyl alcohol) (PVA) nanofibers (PCL-PVA) with a dual function: the PCL nanofibrous layers allow cell adhesion and growth, and the PVA layers enriched with incorporated platelet lysate (PCL-PVA + PL) serve as a drug delivery system for continuous release of bioactive compounds from PL into an aqueous environment. The material is produced using a needleless multi-jet electrospinning approach which can lead to homogeneous large-scale production. The bioactive PCL-PVA + PL membranes are cytocompatible and hemocompatible. A spatially compartmented co-culture of three cell types involved in wound healing - keratinocytes, fibroblasts and endothelial cells - is used for cytocompatibility studies. PCL-PVA + PL membranes enhance the proliferation of all cell types and increase the migration of both fibroblasts and endothelial cells. The membranes are also hemocompatible without any deleterious effect for thrombogenicity, hemolysis and coagulation. Thus, the beneficial effect of the PCL-PVA + PL membrane is demonstrated in vitro, making it a promising scaffold for the treatment of chronic wounds.


Assuntos
Nanofibras , Células Endoteliais , Cicatrização , Poliésteres/farmacologia , Etanol , Álcool de Polivinil , Antibacterianos/farmacologia
7.
Int J Nanomedicine ; 18: 595-610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760757

RESUMO

Introduction: The formation of diabetic ulcers (DU) is a common complication for diabetic patients resulting in serious chronic wounds. There is therefore, an urgent need for complex treatment of this problem. This study examines a bioactive wound dressing of a biodegradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) covered by a thin fibrin layer for sustained delivery of bioactive molecules. Methods: Electrospun PLCL/PCL nanofibers were coated with fibrin-based coating prepared by a controlled technique and enriched with human platelet lysate (hPL), fibroblast growth factor 2 (FGF), and vascular endothelial growth factor (VEGF). The coating was characterized by scanning electron microscopy and fluorescent microscopy. Protein content and its release rate and the effect on human saphenous vein endothelial cells (HSVEC) were evaluated. Results: The highest protein amount is achieved by the coating of PLCL/PCL with a fibrin mesh containing 20% v/v hPL (NF20). The fibrin coating serves as an excellent scaffold to accumulate bioactive molecules from hPL such as PDGF-BB, fibronectin (Fn), and α-2 antiplasmin. The NF20 coating shows both fast and a sustained release of the attached bioactive molecules (Fn, VEGF, FGF). The dressing significantly increases the viability of human saphenous vein endothelial cells (HSVECs) cultivated on a collagen-based wound model. The exogenous addition of FGF and VEGF during the coating procedure further increases the HSVECs viability. In addition, the presence of α-2 antiplasmin significantly stabilizes the fibrin mesh and prevents its cleavage by plasmin. Discussion: The NF20 coating supplemented with FGF and VEGF provides a promising wound dressing for the complex treatment of DU. The incorporation of various bioactive molecules from hPL and growth factors has great potential to support the healing processes by providing appropriate stimuli in the chronic wound.


Assuntos
Nanofibras , Fator A de Crescimento do Endotélio Vascular , Humanos , alfa 2-Antiplasmina , Poliésteres/farmacologia , Células Endoteliais , Cicatrização , Bandagens
8.
ACS Appl Mater Interfaces ; 15(50): 58054-58066, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051712

RESUMO

With the progressive aging of the population, bone fractures are an increasing major health concern. Diverse strategies are being studied to reduce the recovery times using nonaggressive treatments. Electrical stimulation (either endogenous or externally applied electric pulses) has been found to be effective in accelerating bone cell proliferation and differentiation. However, the direct insertion of electrodes into tissues can cause undesirable inflammation or infection reactions. As an alternative, magnetoelectric heterostructures (wherein magnetic fields are applied to induce electric polarization) could be used to achieve electric stimulation without the need for implanted electrodes. Here, we develop a magnetoelectric platform based on flexible kapton/FeGa/P(VDF-TrFE) (flexible substrate/magnetostrictive layer/ferroelectric layer) heterostructures for remote magnetic-field-induced electric field stimulation of human osteoblast cells. We show that the use of flexible supports overcomes the clamping effects that typically occur when analogous magnetoelectric structures are grown onto rigid substrates (which preclude strain transfer from the magnetostrictive to the ferroelectric layers). The study of the diverse proliferation and differentiation markers evidence that in all the stages of bone formation (cell proliferation, extracellular matrix maturation, and mineralization), the electrical stimulation of the cells results in a remarkably better performance. The results pave the way for novel strategies for remote cell stimulation based on flexible platforms not only in bone regeneration but also in many other applications where electrical cell stimulation may be beneficial (e.g., neurological diseases or skin regeneration).


Assuntos
Campos Magnéticos , Osteoblastos , Humanos , Proliferação de Células , Eletrodos Implantados , Estimulação Elétrica
9.
J Funct Biomater ; 14(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36826893

RESUMO

Commercially available titanium alloys such as Ti-6Al-4V are established in clinical use as load-bearing bone implant materials. However, concerns about the toxic effects of vanadium and aluminum have prompted the development of Al- and V-free ß-Ti alloys. Herein, a new alloy composed of non-toxic elements, namely Ti-18Mo-6Nb-5Ta (wt%), has been fabricated by arc melting. The resulting single ß-phase alloy shows improved mechanical properties (Young's modulus and hardness) and similar corrosion behavior in simulated body fluid when compared with commercial Ti-6Al-4V. To increase the cell proliferation capability of the new biomaterial, the surface of Ti-18Mo-6Nb-5Ta was modified by electrodepositing calcium phosphate (CaP) ceramic layers. Coatings with a Ca/P ratio of 1.47 were obtained at pulse current densities, -jc, of 1.8-8.2 mA/cm2, followed by 48 h of NaOH post-treatment. The thickness of the coatings has been measured by scanning electron microscopy from an ion beam cut, resulting in an average thickness of about 5 µm. Finally, cytocompatibility and cell adhesion have been evaluated using the osteosarcoma cell line Saos-2, demonstrating good biocompatibility and enhanced cell proliferation on the CaP-modified Ti-18Mo-6Nb-5Ta material compared with the bare alloy, even outperforming their CaP-modified Ti-6-Al-4V counterparts.

10.
Biomedicines ; 9(4)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808338

RESUMO

A Ti-based alloy (Ti45Zr15Pd30Si5Nb5) with already proven excellent mechanical and biocompatibility features has been coated with piezoelectric zinc oxide (ZnO) to induce the electrical self-stimulation of cells. ZnO was grown onto the pristine alloy in two different morphologies: a flat dense film and an array of nanosheets. The effect of the combined material on osteoblasts (electrically stimulable cells) was analyzed in terms of proliferation, cell adhesion, expression of differentiation markers and induction of calcium transients. Although both ZnO structures were biocompatible and did not induce inflammatory response, only the array of ZnO nanosheets was able to induce calcium transients, which improved the proliferation of Saos-2 cells and enhanced the expression of some early differentiation expression genes. The usual motion of the cells imposes strain to the ZnO nanosheets, which, in turn, create local electric fields owing to their piezoelectric character. These electric fields cause the opening of calcium voltage gates and boost cell proliferation and early differentiation. Thus, the modification of the Ti45Zr15Pd30Si5Nb5 surface with an array of ZnO nanosheets endows the alloy with smart characteristics, making it capable of electric self-stimulation.

11.
Nanomaterials (Basel) ; 11(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924537

RESUMO

Platelet lysate (PL) provides a natural source of growth factors and other bioactive molecules, and the local controlled release of these bioactive PL components is capable of improving the healing of chronic wounds. Therefore, we prepared composite nanofibrous meshes via the needleless electrospinning technique using poly(vinyl alcohol) (PVA) with a high molecular weight and with a high degree of hydrolysis with the incorporated PL (10% w/w). The morphology, wettability and protein release from the nanofibers was then assessed from the resulting composite PVA-PL nanomats. The bioactivity of the PVA-PL nanomats was proved in vitro using HaCaT keratinocytes, human saphenous endothelial cells (HSVECs) and 3T3 fibroblasts. The PVA-PL supported cell adhesion, proliferation, and viability. The improved phenotypic maturation of the HaCaT cells due to the PVA-PL was manifested via the formation of intermediate filaments positive for cytokeratin 10. The PVA-PL enhanced both the synthesis of the von Willebrand factor via HSVECs and HSVECs chemotaxis through membranes with 8 µm-sized pores. These results indicated the favorable effects of the PVA-PL nanomats on the three cell types involved in the wound healing process, and established PVA-PL nanomats as a promising candidate for further evaluation with respect to in vivo experiments.

12.
Nanomaterials (Basel) ; 11(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670150

RESUMO

Chronic wounds affect millions of patients worldwide, and it is estimated that this number will increase steadily in the future due to population ageing. The research of new therapeutic approaches to wound healing includes the development of nanofibrous meshes and the use of platelet lysate (PL) to stimulate skin regeneration. This study considers a combination of a degradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) membranes (NF) and fibrin loaded with various concentrations of PL aimed at the development of bioactive skin wound healing dressings. The cytocompatibility of the NF membranes, as well as the effect of PL, was evaluated in both monocultures and co-cultures of human keratinocytes and human endothelial cells. We determined that the keratinocytes were able to adhere on all the membranes, and their increased proliferation and differentiation was observed on the membranes that contained fibrin with at least 50% of PL (Fbg + PL) after 14 days. With respect to the co-culture experiments, the membranes with fibrin with 20% of PL were observed to enhance the metabolic activity of endothelial cells and their migration, and the proliferation and differentiation of keratinocytes. The results suggest that the newly developed NF combined with fibrin and PL, described in the study, provides a promising dressing for chronic wound healing purposes.

13.
Nanoscale ; 11(18): 8906-8917, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31016299

RESUMO

Biomimetic functional scaffolds for tissue engineering should fulfil specific requirements concerning structural, bio-chemical and electro-mechanical characteristics, depending on the tissue that they are designed to resemble. In bone tissue engineering, piezoelectric materials based on poly(vinylidene fluoride) (PVDF) are on the forefront, due to their inherent ability to generate surface charges under minor mechanical deformations. Nevertheless, PVDF's high hydrophobicity hinders sufficient cell attachment and expansion, which are essential in building biomimetic scaffolds. In this study, PVDF nanofibrous scaffolds were fabricated by electrospinning to achieve high piezoelectricity, which was compared with drop-cast membranes, as it was confirmed by XRD and FTIR measurements. Oxygen plasma treatment of the PVDF surface rendered it hydrophilic, and surface characterization revealed a long-term stability. XPS analysis and contact angle measurements confirmed an unparalleled two-year stability of hydrophilicity. Osteoblast cell culture on the permanently hydrophilic PVDF scaffolds demonstrated better cell spreading over the non-treated ones, as well as integration into the scaffold as indicated by SEM cross-sections. Intracellular calcium imaging confirmed a higher cell activation on the piezoelectric electrospun nanofibrous scaffolds. Combining these findings, and taking advantage of the self-stimulation of the cells due to their attachment on the piezoelectric PVDF nanofibers, a 3D tissue-like functional self-sustainable scaffold for bone tissue engineering was fabricated.


Assuntos
Nanofibras/química , Polivinil/química , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Cálcio/análise , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Estimulação Elétrica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Nanofibras/toxicidade , Osteoblastos/citologia , Gases em Plasma/química , Propriedades de Superfície
14.
J Biomed Mater Res B Appl Biomater ; 106(2): 834-842, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28390183

RESUMO

Ti-based alloys have increased importance for biomedical applications due to their excellent properties. In particular, the two recently developed TiZrPdSi(Nb) alloys, with a predominant ß-Ti phase microstructure, have good mechanical properties, such as a relatively low Young's modulus and high hardness. In the present work, the cytocompatibility of these alloys was assessed using human osteoblast-like Saos-2 cells. Cells grown on the alloys showed larger spreading areas (more than twice) and higher vinculin content (nearly 40% increment) when compared with cells grown on glass control surfaces, indicating a better cell adhesion. Moreover, cell proliferation was 18% higher for cells growing on both alloys than for cells growing on glass and polystyrene control surfaces. Osteogenic differentiation was evaluated by quantifying the expression of four osteogenic genes (osteonectin, osteocalcin, osteopontin, and bone sialoprotein), the presence of three osteogenic proteins (alkaline phosphatase, collagen I, and osteocalcin) and the activity of alkaline phosphatase at different time-points. The results demonstrated that TiZrPdSi and TiZrPdSiNb alloys enhance osteoblast differentiation, and that cells grown on TiZrPdSiNb alloy present higher levels of some late osteogenic markers during the first week in culture. These results suggest that the TiZrPdSi(Nb) alloys can be considered as excellent candidates for orthopaedical uses. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 834-842, 2018.


Assuntos
Ligas , Diferenciação Celular/efeitos dos fármacos , Módulo de Elasticidade , Teste de Materiais , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Ligas/química , Ligas/farmacologia , Linhagem Celular , Humanos , Nióbio/química , Nióbio/farmacologia , Osteoblastos/citologia , Paládio/química , Paládio/farmacologia , Silicones/química , Silicones/farmacologia , Titânio/química , Titânio/farmacologia , Zircônio/química , Zircônio/farmacologia
15.
Adv Mater ; 29(24)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28437016

RESUMO

Noninvasive methods for in situ electrical stimulation of human cells open new frontiers to future bioelectronic therapies, where controlled electrical impulses could replace the use of chemical drugs for disease treatment. Here, this study demonstrates that the interaction of living cells with piezoelectric nanogenerators (NGs) induces a local electric field that self-stimulates and modulates their cell activity, without applying an additional chemical or physical external stimulation. When cells are cultured on top of the NGs, based on 2D ZnO nanosheets, the electromechanical NG-cell interactions stimulate the motility of macrophages and trigger the opening of ion channels present in the plasma membrane of osteoblast-like cells (Saos-2) inducing intracellular calcium transients. In addition, excellent cell viability, proliferation, and differentiation are validated. This in situ cell-scale electrical stimulation of osteoblast-like cells can be extrapolated to other excitable cells such as neurons or muscle cells, paving the way for future bioelectronic medicines based on cell-targeted electrical impulses.


Assuntos
Comunicação Celular , Diferenciação Celular , Estimulação Elétrica , Humanos , Neurônios , Osteoblastos
16.
Biomaterials ; 139: 67-74, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28586720

RESUMO

Remote microactuators are of great interest in biology and medicine as minimally-invasive tools for cellular stimulation. Remote actuation can be achieved by active magnetostrictive transducers which are capable of changing shape in response to external magnetic fields thereby creating controlled displacements. Among the magnetostrictive materials, Galfenol, the multifaceted iron-based smart material, offers high magnetostriction with robust mechanical properties. In order to explore these capabilities for biomedical applications, it is necessary to study the feasibility of material miniaturization in standard fabrication processes as well as evaluate the biocompatibility. Here we develop a technology to fabricate, release, and suspend Galfenol-based microparticles, without affecting the integrity of the material. The morphology, composition and magnetic properties of the material itself are characterized. The direct cytotoxicity of Galfenol is evaluated in vitro using human macrophages, osteoblast and osteosarcoma cells. In addition, cytotoxicity and actuation of Galfenol microparticles in suspension are evaluated using human macrophages. The biological parameters analyzed indicate that Galfenol is not cytotoxic, even after internalization of some of the particles by macrophages. The microparticles were remotely actuated forming intra- and extracellular chains that did not impact the integrity of the cells. The results propose Galfenol as a suitable material to develop remote microactuators for cell biology studies and intracellular applications.


Assuntos
Materiais Biocompatíveis/farmacologia , Gálio/farmacologia , Ferro/farmacologia , Células THP-1/efeitos dos fármacos , Materiais Biocompatíveis/química , Engenharia Biomédica , Adesão Celular , Sobrevivência Celular/efeitos dos fármacos , Gálio/química , Humanos , Ferro/química , Miniaturização , Cultura Primária de Células , Silício/química , Fatores de Tempo
17.
PLoS One ; 11(5): e0156644, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27243628

RESUMO

The use of biocompatible materials, including bulk metallic glasses (BMGs), for tissue regeneration and transplantation is increasing. The good mechanical and corrosion properties of Ti40Zr10Cu38Pd12 BMG and its previously described biocompatibility makes it a potential candidate for medical applications. However, it is known that surface properties like topography might play an important role in regulating cell adhesion, proliferation and differentiation. Thus, in the present study, Ti40Zr10Cu38Pd12 BMG and Ti6-Al-4V alloy were surface-modified electrochemically (nanomesh) or physically (microscratched) to investigate the effect of material topography on human osteoblasts cells (Saos-2) adhesion, proliferation and differentiation. For comparative purposes, the effect of mirror-like polished surfaces was also studied. Electrochemical treatments led to a highly interconnected hierarchical porous structure rich in oxides, which have been described to improve corrosion resistance, whereas microscratched surfaces showed a groove pattern with parallel trenches. Cell viability was higher than 96% for the three topographies tested and for both alloy compositions. In all cases, cells were able to adhere, proliferate and differentiate on the alloys, hence indicating that surface topography plays a minor role on these processes, although a clear cell orientation was observed on microscratched surfaces. Overall, our results provide further evidence that Ti40Zr10Cu38Pd12 BMG is an excellent candidate, in the present two topographies, for bone repair purposes.


Assuntos
Materiais Biocompatíveis/química , Interface Osso-Implante/fisiologia , Vidro/química , Osseointegração/fisiologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Titânio/química , Ligas , Regeneração Óssea , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas Eletroquímicas , Humanos , Osseointegração/efeitos dos fármacos , Próteses e Implantes , Propriedades de Superfície
18.
J Mater Chem B ; 4(39): 6402-6412, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32263449

RESUMO

Two new Fe-based alloys, Fe-10Mn6Si1Pd and Fe-30Mn6Si1Pd, have been fabricated by arc-melting followed by copper mold suction casting. The Fe-30Mn6Si1Pd alloy mainly consists of ε-martensite and γ-austenite Fe-rich phases whereas the Fe-10Mn6Si1Pd alloy primarily contains the α-Fe(Mn)-ferrite phase. Additionally, Pd-rich precipitates were detected in both alloys. Good mechanical response was observed by nanoindentation: hardness values around 5.6 GPa and 4.2 GPa and reduced Young's moduli of 125 GPa and 93 GPa were measured for the as-prepared Fe-10Mn6Si1Pd and Fe-30Mn6Si1Pd alloys, respectively. Both alloys are thus harder and exhibit lower Young's modulus than 316L stainless steel, which is one of the most common Fe-based reference materials used for biomedical applications. Compared with the ferromagnetic Fe-10Mn6Si1Pd alloy, the paramagnetic Fe-30Mn6Si1Pd alloy is more appropriate to be used as an implant since it would be compatible for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) analyses. Concerning biocompatibility, the more hydrophilic Fe-10Mn6Si1Pd alloy shows improved cell adhesion but its pronounced ion leaching has a negative effect on the proliferation of cells. The influence of immersion in a simulated body fluid on the composition, microstructure, mechanical and magnetic properties of both alloys is assessed, and the correlation between microstructure evolution and physical properties is discussed.

19.
Materials (Basel) ; 6(11): 4930-4945, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28788368

RESUMO

The synthesis and characterization of Ti40Zr20Hf20Fe20 (atom %) alloy, in the form of rods (f = 2 mm), prepared by arc-melting, and subsequent Cu mold suction casting, is presented. The microstructure, mechanical and corrosion properties, as well as in vitro biocompatibility of this alloy, are investigated. This material consists of a mixture of several nanocrystalline phases. It exhibits excellent mechanical behavior, dominated by high strength and relatively low Young's modulus, and also good corrosion resistance, as evidenced by the passive behavior in a wide potential window and the low corrosion current densities values. In terms of biocompatibility, this alloy is not cytotoxic and preosteoblast cells can easily adhere onto its surface and differentiate into osteoblasts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA