Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Respir Res ; 23(1): 44, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241086

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is among the top 5 causes of mortality in the world and can develop as a consequence of genetic and/or environmental factors. Current efforts are focused on identifying early life insults and how these contribute to COPD development. In line with this, our study focuses on the influence of early life nicotine exposure and its potential impact on (a) lung pulmonary functions, and (b) elastase-induced emphysema in adulthood. METHODS: To address this hypothesis, we developed a model of 2 hits, delivered at different time points: mouse pups were first exposed to nicotine/placebo in utero and during lactation, and then subsequently received elastase/placebo at the age of 11 weeks. The effect of nicotine pretreatment and elastase instillation was assessed by (a) measurement of pulmonary function at post-elastase day (ped) 21, and (b) transcriptomic profiling at ped3 and 21, and complementary protein determination. Statistical significance was determined by 3- and 2-way ANOVA for pulmonary functions, and RNAseq results were analyzed using the R project. RESULTS: We did not observe any impact of nicotine pre- and early post-natal exposure compared to control samples on lung pulmonary functions in adulthood, as measured by FLEXIVENT technology. After elastase instillation, substantial lung damage was detected by x-ray tomography and was accompanied by loss in body weight at ped3 as well as an increase in cell numbers, inflammatory markers in BAL and lung volume at ped21. Lung functions showed a decrease in elastance and an increase in deep inflation volume and pressure volume (pv) loop area in animals with emphysema at ped21. Nicotine had no effect on elastance and deep inflation volume, but did affect the pv loop area in animals with emphysema at ped21. Extensive transcriptomic changes were induced by elastase at ped3 both in the nicotine-pretreated and the control samples, with several pathways common to both groups, such as for cell cycle, DNA adhesion and DNA damage. Nicotine pretreatment affected the number of lymphocytes present in BAL after elastase instillation and some of the complement pathway related proteins, arguing for a slight modification of the immune response, as well as changes related to general body metabolism. The majority of elastase-induced transcriptomic changes detected at ped3 had disappeared at ped21. In addition, transcriptomic profiling singled out a common gene pool that was independently activated by nicotine and elastase. CONCLUSIONS: Our study reports a broad spectrum of transient transcriptomic changes in mouse emphysema and identifies nicotine as influencing the emphysema-associated immune system response.


Assuntos
Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Expectativa de Vida , Nicotina/efeitos adversos , Enfisema Pulmonar/genética , RNA/genética , Animais , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Modelos Animais de Doenças , Antígenos H-2 , Antígenos de Histocompatibilidade Classe I/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Elastase Pancreática/toxicidade , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L619-L630, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32022591

RESUMO

Mouse lung developmental maturation and final alveolarization phase begin at birth. During this dynamic process, alveolar cells modify their morphology and anchorage to the extracellular matrix. In particular, alveolar epithelial cell (AEC) type I undergo cytoplasmic flattening and folding to ensure alveoli lining. We developed FACS conditions for simultaneous isolation of alveolar epithelial and endothelial cells in the absence of specific reporters during the early and middle alveolar phase. We evidenced for the first time a pool of extractable epithelial cell populations expressing high levels of podoplanin at postnatal day (pnd)2, and we confirmed by RT-qPCR that these cells are already differentiated but still immature AEC type I. Maturation causes a decrease in isolation yields, reflecting the morphological changes that these cell populations are undergoing. Moreover, we find that major histocompatibility complex II (MHCII), reported as a good marker of AEC type II, is poorly expressed at pnd2 but highly present at pnd8. Combined experiments using LysoTracker and MHCII demonstrate the de novo acquisition of MCHII in AEC type II during lung alveolarization. The lung endothelial populations exhibit FACS signatures from vascular and lymphatic compartments. They can be concomitantly followed throughout alveolar development and were obtained with a noticeable increased yield at the last studied time point (pnd16). Our results provide new insights into early lung alveolar cell isolation feasibility and represent a valuable tool for pure AEC type I preparation as well as further in vitro two- and three-dimensional studies.


Assuntos
Células Epiteliais Alveolares/citologia , Células Endoteliais/citologia , Células Epiteliais/citologia , Pulmão/citologia , Alvéolos Pulmonares/citologia , Animais , Diferenciação Celular/fisiologia , Separação Celular/métodos , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Organogênese/fisiologia
3.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L606-L618, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31967849

RESUMO

Harmful consequences of cigarette smoke (CS) exposure during lung development can already manifest in infancy. In particular, early life exposure to nicotine, the main component of CS, was shown to affect lung development in animal models. We aimed to characterize the effect of nicotine on alveoli formation. We analyzed the kinetics of normal alveolar development during the alveolarization phase and then looked at the effect of nicotine in a mouse model of gestational and early life exposure. Immunohistochemical staining revealed that the wave of cell proliferation [i.e., vascular endothelial cells, alveolar epithelial cells (AEC) type II and mesenchymal cell] occurs at postnatal day (pnd) 8 in control and nicotine-exposed lungs. However, FACS analysis of individual epithelial alveolar cells revealed nicotine-induced transient increase of AEC type I proliferation and decrease of vascular endothelial cell proliferation at pnd8. Furthermore, nicotine increased the percentage of endothelial cells at pnd2. Transcriptomic data also showed significant changes in nicotine samples compared with the controls on cell cycle-associated genes at pnd2 but not anymore at pnd16. Accordingly, the expression of survivin, involved in cell cycle regulation, also follows a different kinetics in nicotine lung extracts. These changes resulted in an increased lung size detected by stereology at pnd16 but no longer in adult age, suggesting that nicotine can act on the pace of lung maturation. Taken together, our results indicate that early life nicotine exposure could be harmful to alveolar development independently from other toxicants contained in CS.


Assuntos
Lactação/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Exposição Materna/efeitos adversos , Nicotina/efeitos adversos , Gravidez/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Ciclo Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
EMBO J ; 31(7): 1823-35, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22314232

RESUMO

A third of the human genome encodes N-glycosylated proteins. These are co-translationally translocated into the lumen/membrane of the endoplasmic reticulum (ER) where they fold and assemble before they are transported to their final destination. Here, we show that calnexin, a major ER chaperone involved in glycoprotein folding is palmitoylated and that this modification is mediated by the ER palmitoyltransferase DHHC6. This modification leads to the preferential localization of calnexin to the perinuclear rough ER, at the expense of ER tubules. Moreover, palmitoylation mediates the association of calnexin with the ribosome-translocon complex (RTC) leading to the formation of a supercomplex that recruits the actin cytoskeleton, leading to further stabilization of the assembly. When formation of the calnexin-RTC supercomplex was affected by DHHC6 silencing, mutation of calnexin palmitoylation sites or actin depolymerization, folding of glycoproteins was impaired. Our findings thus show that calnexin is a stable component of the RTC in a manner that is exquisitely dependent on its palmitoylation status. This association is essential for the chaperone to capture its client proteins as they emerge from the translocon, acquire their N-linked glycans and initiate folding.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Calnexina/metabolismo , Lipoilação , Glicoproteínas de Membrana/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/metabolismo , Ribossomos/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Citoesqueleto/metabolismo , Retículo Endoplasmático/metabolismo , Inativação Gênica , Glicoproteínas/metabolismo , Células HeLa , Humanos , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Estabilidade Proteica
5.
Biochem Soc Trans ; 41(1): 84-8, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23356263

RESUMO

S-Palmitoylation, the only reversible post-translational lipid modification, confers unique biochemical and functional properties to proteins. Although it has long been known that viral proteins are palmitoylated, recent studies reveal that this modification plays a critical role for pathogens of all kinds and at multiple steps of their life cycle. The present review examines the involvement of S-palmitoylation in infection by viruses, bacteria and parasites and illustrates how pathogens have evolved to manipulate the host palmitoylation machinery.


Assuntos
Interações Hospedeiro-Patógeno , Lipoilação , Ácido Palmítico/metabolismo , Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Proteínas Virais/metabolismo , Fenômenos Fisiológicos Virais
6.
Cells ; 12(19)2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37830589

RESUMO

(1) Background: Stereological estimations significantly contributed to our understanding of lung anatomy and physiology. Taking stereology fully 3-dimensional facilitates the estimation of novel parameters. (2) Methods: We developed a protocol for the analysis of all airspaces of an entire lung. It includes (i) high-resolution synchrotron radiation-based X-ray tomographic microscopy, (ii) image segmentation using the free machine-learning tool Ilastik and ImageJ, and (iii) calculation of the airspace diameter distribution using a diameter map function. To evaluate the new pipeline, lungs from adult mice with cystic fibrosis (CF)-like lung disease (ßENaC-transgenic mice) or mice with elastase-induced emphysema were compared to healthy controls. (3) Results: We were able to show the distribution of airspace diameters throughout the entire lung, as well as separately for the conducting airways and the gas exchange area. In the pathobiological context, we observed an irregular widening of parenchymal airspaces in mice with CF-like lung disease and elastase-induced emphysema. Comparable results were obtained when analyzing lungs imaged with µCT, sugges-ting that our pipeline is applicable to different kinds of imaging modalities. (4) Conclusions: We conclude that the airspace diameter map is well suited for a detailed analysis of unevenly distri-buted structural alterations in chronic muco-obstructive lung diseases such as cystic fibrosis and COPD.


Assuntos
Fibrose Cística , Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Camundongos , Animais , Fibrose Cística/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Enfisema Pulmonar/diagnóstico por imagem , Elastase Pancreática
7.
Antioxidants (Basel) ; 10(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34829703

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a noninflammatory progressive lung disease. Oxidative damage is a hallmark of IPF, but the sources and consequences of oxidant generation in the lungs are unclear. In this study, we addressed the link between the H2O2-generating enzyme NADPH oxidase 4 (NOX4) and di-tyrosine (DT), an oxidative post-translational modification in IPF lungs. We performed immunohistochemical staining for DT and NOX4 in pulmonary tissue from patients with IPF and controls using validated antibodies. In the healthy lung, DT showed little or no staining and NOX4 was mostly present in normal vascular endothelium. On the other hand, both markers were detected in several cell types in the IPF patients, including vascular smooth muscle cells and epithelium (bronchial cells and epithelial cells type II). The link between NOX4 and DT was addressed in human fibroblasts deficient for NOX4 activity (mutation in the CYBA gene). Induction of NOX4 by Transforming growth factor beta 1 (TGFß1) in fibroblasts led to moderate DT staining after the addition of a heme-containing peroxidase in control cells but not in the fibroblasts deficient for NOX4 activity. Our data indicate that DT is a histological marker of IPF and that NOX4 can generate a sufficient amount of H2O2 for DT formation in vitro.

8.
Chem Phys Lipids ; 180: 44-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24534427

RESUMO

S-palmitoylation involves the attachment of a 16-carbon long fatty acid chain to the cysteine residues of proteins. The process is enzymatic and dynamic with DHHC enzymes mediating palmitoylation and acyl-protein thioesterases reverting the reaction. Proteins that undergo this modification span almost all cellular functions. While the increase in hydrophobicity generated by palmitoylation has the obvious consequence of triggering membrane association, the effects on transmembrane proteins are less intuitive and span a vast range. We review here the current knowledge on palmitoylating and depalmitoylating enzymes, the methods that allow the study of this lipid modification and which drugs can affect it, and finally we focus on four cellular processes for which recent studies reveal an involvement of palmitoylation: endocytosis, reproduction and cell growth, fat and sugar homeostasis and signal transduction at the synapse.


Assuntos
Células/metabolismo , Ácido Palmítico/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Aciltransferases/metabolismo , Animais , Células/enzimologia , Humanos , Lisofosfolipase/metabolismo , Proteínas/química
9.
FEBS J ; 280(12): 2766-74, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23551889

RESUMO

S-palmitoylation is post-translational modification, which consists in the addition of a C16 acyl chain to cytosolic cysteines and which is unique amongst lipid modifications in that it is reversible. It can thus, like phosphorylation or ubiquitination, act as a switch. While palmitoylation of soluble proteins allows them to interact with membranes, the consequences of palmitoylation for transmembrane proteins are more enigmatic. We briefly review the current knowledge regarding the enzymes responsible for palmitate addition and removal. We then describe various observed consequences of membrane protein palmitoylation. We propose that the direct effects of palmitoylation on transmembrane proteins, however, might be limited to four non-mutually exclusive mechanistic consequences: alterations in the conformation of transmembrane domains, association with specific membrane domains, controlled interactions with other proteins and controlled interplay with other post-translational modifications.


Assuntos
Proteínas de Membrana/metabolismo , Ácido Palmítico/metabolismo , Processamento de Proteína Pós-Traducional , Aciltransferases/fisiologia , Animais , Humanos , Lipoilação , Proteínas de Membrana/química , Ligação Proteica , Estrutura Terciária de Proteína
10.
Comp Biochem Physiol B Biochem Mol Biol ; 154(3): 264-73, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19563905

RESUMO

Genes of the p53 family are known to be critical regulators of the cell cycle. They have already been established as possible biomarkers. Elaborate regulation mechanisms result in numerous cDNA and protein isoforms being expressed from each gene of the p53 family. Their similarity caused an often misleading nomenclature in non-vertebrate species. The aim of the present work is a clarification of the nomenclature of molluscan p53 family sequences, an essential prerequisite for reliable interpretation of gene expression and protein function studies. Here, we report five partial cDNA and one partial genomic p63 sequences, all originating from two Mytilus galloprovincialis individuals. DNA, deduced protein sequences, and the exon/intron architecture were analyzed and compared to p53, p63 and p73 sequences from other organisms. Along with our sequences, we analyzed all similar molluscan sequences found in the GenBank database. The analysis showed our cDNA sequences code for the TAp63gamma isoform of the p63 protein, and identified all other molluscan p53 family sequences as p63 genes or their expression isoforms. Our results also indicate p63 as the ancestral gene of the p53 family as well as the only gene of the family present in non-chordate metazoan species.


Assuntos
Mytilus/genética , Transativadores/genética , Proteína Supressora de Tumor p53/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sequência Conservada , DNA Complementar/genética , Evolução Molecular , Regulação da Expressão Gênica , Genômica , Humanos , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Terminologia como Assunto , Transativadores/química , Proteína Supressora de Tumor p53/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA