Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Methods ; 142: 59-73, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29382556

RESUMO

The folding and three-dimensional (3D) organization of chromatin in the nucleus critically impacts genome function. The past decade has witnessed rapid advances in genomic tools for delineating 3D genome architecture. Among them, chromosome conformation capture (3C)-based methods such as Hi-C are the most widely used techniques for mapping chromatin interactions. However, traditional Hi-C protocols rely on restriction enzymes (REs) to fragment chromatin and are therefore limited in resolution. We recently developed DNase Hi-C for mapping 3D genome organization, which uses DNase I for chromatin fragmentation. DNase Hi-C overcomes RE-related limitations associated with traditional Hi-C methods, leading to improved methodological resolution. Furthermore, combining this method with DNA capture technology provides a high-throughput approach (targeted DNase Hi-C) that allows for mapping fine-scale chromatin architecture at exceptionally high resolution. Hence, targeted DNase Hi-C will be valuable for delineating the physical landscapes of cis-regulatory networks that control gene expression and for characterizing phenotype-associated chromatin 3D signatures. Here, we provide a detailed description of method design and step-by-step working protocols for these two methods.


Assuntos
Mapeamento Cromossômico/métodos , Desoxirribonuclease I/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imageamento Tridimensional/métodos , Imagem Molecular/métodos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/genética , Mapeamento Cromossômico/instrumentação , Reagentes de Ligações Cruzadas/química , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/metabolismo , Desoxirribonuclease I/química , Formaldeído/química , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Imageamento Tridimensional/instrumentação , Imagem Molecular/instrumentação , Técnicas de Cultura de Tecidos/instrumentação , Técnicas de Cultura de Tecidos/métodos , Sequenciamento Completo do Genoma/instrumentação , Sequenciamento Completo do Genoma/métodos
2.
Cytometry A ; 93(12): 1220-1225, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30277660

RESUMO

Circulating tumor cells (CTCs) can reliably be identified in cancer patients and are associated with clinical outcome. Next-generation "liquid biopsy" technologies will expand CTC diagnostic investigation to include phenotypic characterization and single-cell molecular analysis. We describe here a rare cell analysis platform designed to comprehensively collect and identify CTCs, enable multi-parameter assessment of individual CTCs, and retrieve single cells for molecular analysis. The platform has the following four integrated components: 1) density-based separation of the CTC-containing blood fraction and sample deposition onto microscope slides; 2) automated multiparameter fluorescence staining; 3) image scanning, analysis, and review; and 4) mechanical CTC retrieval. The open platform utilizes six fluorescence channels, of which four channels are used to identify CTC and two channels are available for investigational biomarkers; a prototype assay that allows three investigational biomarker channels has been developed. Single-cell retrieval from fixed slides is compatible with whole genome amplification methods for genomic analysis. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Assuntos
Neoplasias/patologia , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais/genética , Contagem de Células/métodos , Linhagem Celular Tumoral , Separação Celular/métodos , Fluorescência , Humanos , Biópsia Líquida/métodos , Neoplasias/genética , Análise de Célula Única/métodos
3.
Blood ; 125(6): 1025-33, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25343958

RESUMO

Several approaches for controlling hematopoietic stem and progenitor cell expansion, lineage commitment, and maturation have been investigated for improving clinical interventions. We report here that amino acid substitutions in a thrombopoietin receptor (Mpl)--containing cell growth switch (CGS) extending receptor stability improve the expansion capacity of human cord blood CD34(+) cells in the absence of exogenous cytokines. Activation of this CGS with a chemical inducer of dimerization (CID) expands total cells 99-fold, erythrocytes 70-fold, megakaryocytes 0.5-fold, and CD34(+) stem/progenitor cells 4.4-fold by 21 days of culture. Analysis of cells in these expanded populations identified a CID-dependent bipotent erythrocyte-megakaryocyte precursor (PEM) population, and a CID-independent macrophage population. The CD235a(+)/CD41a(+) PEM population constitutes up to 13% of the expansion cultures, can differentiate into erythrocytes or megakaryocytes, exhibits very little expansion capacity, and exists at very low levels in unexpanded cord blood. The CD206(+) macrophage population constitutes up to 15% of the expansion cultures, exhibits high-expansion capacity, and is physically associated with differentiating erythroblasts. Taken together, these studies describe a fundamental enhancement of the CGS expansion platform, identify a novel precursor population in the erythroid/megakaryocytic differentiation pathway of humans, and implicate an erythropoietin-independent, macrophage-associated pathway supporting terminal erythropoiesis in this expansion system.


Assuntos
Substituição de Aminoácidos , Células Eritroides/citologia , Eritropoese , Megacariócitos/citologia , Receptores de Trombopoetina/genética , Animais , Antígenos CD34/análise , Linhagem Celular , Proliferação de Células , Células Cultivadas , Células Eritroides/metabolismo , Sangue Fetal/citologia , Humanos , Megacariócitos/metabolismo , Camundongos , Glicoproteína IIb da Membrana de Plaquetas/análise , Receptores de Trombopoetina/metabolismo
4.
Nucleic Acids Res ; 43(3): 1332-44, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25583238

RESUMO

We define a new category of candidate tumor drivers in cancer genome evolution: 'selected expression regulators' (SERs)-genes driving dysregulated transcriptional programs in cancer evolution. The SERs are identified from genome-wide tumor expression data with a novel method, namely SPARROW ( SPAR: se selected exp R: essi O: n regulators identified W: ith penalized regression). SPARROW uncovers a previously unknown connection between cancer expression variation and driver events, by using a novel sparse regression technique. Our results indicate that SPARROW is a powerful complementary approach to identify candidate genes containing driver events that are hard to detect from sequence data, due to a large number of passenger mutations and lack of comprehensive sequence information from a sufficiently large number of samples. SERs identified by SPARROW reveal known driver mutations in multiple human cancers, along with known cancer-associated processes and survival-associated genes, better than popular methods for inferring gene expression networks. We demonstrate that when applied to acute myeloid leukemia expression data, SPARROW identifies an apoptotic biomarker (PYCARD) for an investigational drug obatoclax. The PYCARD and obatoclax association is validated in 30 AML patient samples.


Assuntos
Neoplasias Encefálicas/genética , Perfilação da Expressão Gênica , Glioblastoma/genética , Leucemia Mieloide Aguda/genética , Redes Reguladoras de Genes , Humanos , Mutação
5.
Proc Natl Acad Sci U S A ; 111(12): 4484-9, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24623855

RESUMO

The naïve pluripotent state has been shown in mice to lead to broad and more robust developmental potential relative to primed mouse epiblast cells. The human naïve ES cell state has eluded derivation without the use of transgenes, and forced expression of OCT4, KLF4, and KLF2 allows maintenance of human cells in a naïve state [Hanna J, et al. (2010) Proc Natl Acad Sci USA 107(20):9222-9227]. We describe two routes to generate nontransgenic naïve human ES cells (hESCs). The first is by reverse toggling of preexisting primed hESC lines by preculture in the histone deacetylase inhibitors butyrate and suberoylanilide hydroxamic acid, followed by culture in MEK/ERK and GSK3 inhibitors (2i) with FGF2. The second route is by direct derivation from a human embryo in 2i with FGF2. We show that human naïve cells meet mouse criteria for the naïve state by growth characteristics, antibody labeling profile, gene expression, X-inactivation profile, mitochondrial morphology, microRNA profile and development in the context of teratomas. hESCs can exist in a naïve state without the need for transgenes. Direct derivation is an elusive, but attainable, process, leading to cells at the earliest stage of in vitro pluripotency described for humans. Reverse toggling of primed cells to naïve is efficient and reproducible.


Assuntos
Células-Tronco Embrionárias/citologia , Animais , Linhagem da Célula , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Transgenes , Inativação do Cromossomo X
6.
Trends Genet ; 29(1): 6-10, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23102584

RESUMO

Patients with cancer face an ever-widening gap between the exponential rate at which technology improves and the linear rate at which these advances are translated into clinical practice. Closing this gap will require the establishment of learning loops that intimately link lab and clinic and enable the immediate transfer of knowledge, thereby engaging highly motivated patients with cancer as true partners in research. Here, we discuss the goal of creating a distributed network that aims to place world-class resources at the disposal of select patients with cancer and their oncologists, and then use these intensively monitored individual patient experiences to improve collective understanding of how cancer works.


Assuntos
Pesquisa Biomédica/tendências , Neoplasias/etiologia , Neoplasias/terapia , Medicina de Precisão , Pesquisa Biomédica/métodos , Redes Comunitárias/tendências , Genômica/métodos , Humanos , Oncologia/métodos , Oncologia/tendências , Metabolômica/métodos , Modelos Biológicos , Neoplasias/genética , Medicina de Precisão/métodos , Proteômica/métodos , Fatores de Tempo
7.
EMBO J ; 31(9): 2103-16, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22446391

RESUMO

The function of metabolic state in stemness is poorly understood. Mouse embryonic stem cells (ESC) and epiblast stem cells (EpiSC) are at distinct pluripotent states representing the inner cell mass (ICM) and epiblast embryos. Human embryonic stem cells (hESC) are similar to EpiSC stage. We now show a dramatic metabolic difference between these two stages. EpiSC/hESC are highly glycolytic, while ESC are bivalent in their energy production, dynamically switching from glycolysis to mitochondrial respiration on demand. Despite having a more developed and expanding mitochondrial content, EpiSC/hESC have low mitochondrial respiratory capacity due to low cytochrome c oxidase (COX) expression. Similarly, in vivo epiblasts suppress COX levels. These data reveal EpiSC/hESC functional similarity to the glycolytic phenotype in cancer (Warburg effect). We further show that hypoxia-inducible factor 1α (HIF1α) is sufficient to drive ESC to a glycolytic Activin/Nodal-dependent EpiSC-like stage. This metabolic switch during early stem-cell development may be deterministic.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ativinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , DNA Mitocondrial/análise , Feminino , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Prostaglandina-Endoperóxido Sintases/metabolismo
8.
J Natl Compr Canc Netw ; 14(1): 8-17, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26733551

RESUMO

Accelerating cancer research is expected to require new types of clinical trials. This report describes the Intensive Trial of OMics in Cancer (ITOMIC) and a participant with triple-negative breast cancer metastatic to bone, who had markedly elevated circulating tumor cells (CTCs) that were monitored 48 times over 9 months. A total of 32 researchers from 14 institutions were engaged in the patient's evaluation; 20 researchers had no prior involvement in patient care and 18 were recruited specifically for this patient. Whole-exome sequencing of 3 bone marrow samples demonstrated a novel ROS1 variant that was estimated to be present in most or all tumor cells. After an initial response to cisplatin, a hypothesis of crizotinib sensitivity was disproven. Leukapheresis followed by partial CTC enrichment allowed for the development of a differential high-throughput drug screen and demonstrated sensitivity to investigational BH3-mimetic inhibitors of BCL-2 that could not be tested in the patient because requests to the pharmaceutical sponsors were denied. The number and size of CTC clusters correlated with clinical status and eventually death. Focusing the expertise of a distributed network of investigators on an intensively monitored patient with cancer can generate high-resolution views of the natural history of cancer and suggest new opportunities for therapy. Optimization requires access to investigational drugs.


Assuntos
Redes Comunitárias , Pesquisadores , Neoplasias de Mama Triplo Negativas/diagnóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ósseas/secundário , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Prova Pericial , Feminino , Seguimentos , Humanos , Leucaférese , Estudos Longitudinais , Pessoa de Meia-Idade , Metástase Neoplásica , Células Neoplásicas Circulantes , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia
9.
Nature ; 465(7296): 363-7, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20436457

RESUMO

Layered on top of information conveyed by DNA sequence and chromatin are higher order structures that encompass portions of chromosomes, entire chromosomes, and even whole genomes. Interphase chromosomes are not positioned randomly within the nucleus, but instead adopt preferred conformations. Disparate DNA elements co-localize into functionally defined aggregates or 'factories' for transcription and DNA replication. In budding yeast, Drosophila and many other eukaryotes, chromosomes adopt a Rabl configuration, with arms extending from centromeres adjacent to the spindle pole body to telomeres that abut the nuclear envelope. Nonetheless, the topologies and spatial relationships of chromosomes remain poorly understood. Here we developed a method to globally capture intra- and inter-chromosomal interactions, and applied it to generate a map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae. The map recapitulates known features of genome organization, thereby validating the method, and identifies new features. Extensive regional and higher order folding of individual chromosomes is observed. Chromosome XII exhibits a striking conformation that implicates the nucleolus as a formidable barrier to interaction between DNA sequences at either end. Inter-chromosomal contacts are anchored by centromeres and include interactions among transfer RNA genes, among origins of early DNA replication and among sites where chromosomal breakpoints occur. Finally, we constructed a three-dimensional model of the yeast genome. Our findings provide a glimpse of the interface between the form and function of a eukaryotic genome.


Assuntos
Posicionamento Cromossômico/fisiologia , Cromossomos Fúngicos/metabolismo , Genoma Fúngico , Imageamento Tridimensional , Espaço Intranuclear/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Centrômero/genética , Centrômero/metabolismo , Pontos de Quebra do Cromossomo , Cromossomos Fúngicos/genética , Replicação do DNA , Haploidia , RNA de Transferência/genética , Origem de Replicação/genética
10.
BMC Cancer ; 15: 360, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25944336

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) are malignant cells that have migrated from solid cancers into the blood, where they are typically present in rare numbers. There is great interest in using CTCs to monitor response to therapies, to identify clinically actionable biomarkers, and to provide a non-invasive window on the molecular state of a tumor. Here we characterize the performance of the AccuCyte®--CyteFinder® system, a comprehensive, reproducible and highly sensitive platform for collecting, identifying and retrieving individual CTCs from microscopic slides for molecular analysis after automated immunofluorescence staining for epithelial markers. METHODS: All experiments employed a density-based cell separation apparatus (AccuCyte) to separate nucleated cells from the blood and transfer them to microscopic slides. After staining, the slides were imaged using a digital scanning microscope (CyteFinder). Precisely counted model CTCs (mCTCs) from four cancer cell lines were spiked into whole blood to determine recovery rates. Individual mCTCs were removed from slides using a single-cell retrieval device (CytePicker™) for whole genome amplification and subsequent analysis by PCR and Sanger sequencing, whole exome sequencing, or array-based comparative genomic hybridization. Clinical CTCs were evaluated in blood samples from patients with different cancers in comparison with the CellSearch® system. RESULTS: AccuCyte--CyteFinder presented high-resolution images that allowed identification of mCTCs by morphologic and phenotypic features. Spike-in mCTC recoveries were between 90 and 91%. More than 80% of single-digit spike-in mCTCs were identified and even a single cell in 7.5 mL could be found. Analysis of single SKBR3 mCTCs identified presence of a known TP53 mutation by both PCR and whole exome sequencing, and confirmed the reported karyotype of this cell line. Patient sample CTC counts matched or exceeded CellSearch CTC counts in a small feasibility cohort. CONCLUSION: The AccuCyte--CyteFinder system is a comprehensive and sensitive platform for identification and characterization of CTCs that has been applied to the assessment of CTCs in cancer patient samples as well as the isolation of single cells for genomic analysis. It thus enables accurate non-invasive monitoring of CTCs and evolving cancer biology for personalized, molecularly-guided cancer treatment.


Assuntos
Separação Celular/métodos , Células Neoplásicas Circulantes , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Hibridização Genômica Comparativa , Análise Mutacional de DNA , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Masculino , Neoplasias da Próstata/patologia , Análise de Célula Única
11.
PLoS Comput Biol ; 10(7): e1003703, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25010360

RESUMO

Cancers arise from successive rounds of mutation and selection, generating clonal populations that vary in size, mutational content and drug responsiveness. Ascertaining the clonal composition of a tumor is therefore important both for prognosis and therapy. Mutation counts and frequencies resulting from next-generation sequencing (NGS) potentially reflect a tumor's clonal composition; however, deconvolving NGS data to infer a tumor's clonal structure presents a major challenge. We propose a generative model for NGS data derived from multiple subsections of a single tumor, and we describe an expectation-maximization procedure for estimating the clonal genotypes and relative frequencies using this model. We demonstrate, via simulation, the validity of the approach, and then use our algorithm to assess the clonal composition of a primary breast cancer and associated metastatic lymph node. After dividing the tumor into subsections, we perform exome sequencing for each subsection to assess mutational content, followed by deep sequencing to precisely count normal and variant alleles within each subsection. By quantifying the frequencies of 17 somatic variants, we demonstrate that our algorithm predicts clonal relationships that are both phylogenetically and spatially plausible. Applying this method to larger numbers of tumors should cast light on the clonal evolution of cancers in space and time.


Assuntos
Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Biologia Computacional/métodos , Algoritmos , Neoplasias da Mama/metabolismo , Simulação por Computador , Feminino , Genótipo , Humanos , Filogenia
12.
Nucleic Acids Res ; 40(11): e85, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22402491

RESUMO

The main methods for producing genetically engineered cells use viral vectors for which safety issues and manufacturing costs remain a concern. In addition, selection of desired cells typically relies on the use of cytotoxic drugs with long culture times. Here, we introduce an efficient non-viral approach combining the Sleeping Beauty (SB) Transposon System with selective proliferation of engineered cells by chemically induced dimerization (CID) of growth factor receptors. Minicircles carrying a SB transposon cassette containing a reporter transgene and a gene for the F36VFGFR1 fusion protein were delivered to the hematopoietic cell line Ba/F3. Stably-transduced Ba/F3 cell populations with >98% purity were obtained within 1 week using this positive selection strategy. Copy number analysis by quantitative PCR (qPCR) revealed that CID-selected cells contain on average higher copy numbers of transgenes than flow cytometry-selected cells, demonstrating selective advantage for cells with multiple transposon insertions. A diverse population of cells is present both before and after culture in CID media, although site-specific qPCR of transposon junctions show that population diversity is significantly reduced after selection due to preferential expansion of clones with multiple integration events. This non-viral, positive selection approach is an attractive alternative for producing engineered cells.


Assuntos
Engenharia Celular/métodos , Elementos de DNA Transponíveis , Animais , Linhagem Celular , Linhagem Celular Transformada , Proliferação de Células , Sobrevivência Celular , Dimerização , Engenharia Genética/métodos , Proteínas de Fluorescência Verde/genética , Camundongos , Plasmídeos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Tacrolimo/análogos & derivados , Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Transdução Genética , Transgenes
13.
Methods ; 58(3): 277-88, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22776363

RESUMO

Accumulating evidence demonstrates that the three-dimensional (3D) organization of chromosomes within the eukaryotic nucleus reflects and influences genomic activities, including transcription, DNA replication, recombination and DNA repair. In order to uncover structure-function relationships, it is necessary first to understand the principles underlying the folding and the 3D arrangement of chromosomes. Chromosome conformation capture (3C) provides a powerful tool for detecting interactions within and between chromosomes. A high throughput derivative of 3C, chromosome conformation capture on chip (4C), executes a genome-wide interrogation of interaction partners for a given locus. We recently developed a new method, a derivative of 3C and 4C, which, similar to Hi-C, is capable of comprehensively identifying long-range chromosome interactions throughout a genome in an unbiased fashion. Hence, our method can be applied to decipher the 3D architectures of genomes. Here, we provide a detailed protocol for this method.


Assuntos
Mapeamento Cromossômico/métodos , Genoma Fúngico , Saccharomyces cerevisiae/genética , Animais , Biotinilação , Reagentes de Ligações Cruzadas/química , Clivagem do DNA , Enzimas de Restrição do DNA/química , DNA Circular/química , DNA Circular/genética , DNA Circular/isolamento & purificação , DNA Fúngico/química , DNA Fúngico/genética , Formaldeído/química , Biblioteca Gênica , Humanos , Conformação de Ácido Nucleico , Curva ROC , Análise de Sequência de DNA
14.
Nat Genet ; 26(1): 64-6, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10973250

RESUMO

A major obstacle to stem-cell gene therapy rests in the inability to deliver a gene into a therapeutically relevant fraction of stem cells. One way to circumvent this obstacle is to use selection. Vectors containing two linked genes serve as the basis for selection, with one gene encoding a selectable product and the other, a therapeutic protein. Applying selection in vivo has the potential to bring a minor population of genetically corrected cells into the therapeutic range. But strategies for achieving in vivo selection have traditionally relied on genes that confer resistance to cytotoxic drugs and are encumbered by toxicity. Here we describe a new system for in vivo selection that uses a 'cell-growth switch', allowing a minor population of genetically corrected cells into the therapeutic range. But strategies for achieving in vivo selection have traditionally relied on genes that confer resistance to cytotoxic drugs and are encumbered by toxicity. Here we describe a new system for in vivo selection that uses a 'cell-growth switch', allowing a minor population of genetically modified cells to be inducibly amplified, thereby averting the risks associated with cytotoxic drugs. This system provides a general platform for conditionally expanding genetically modified cell populations in vivo, and may have widespread applications in gene and cell therapy.


Assuntos
Separação Celular , Terapia Genética/métodos , Vetores Genéticos , Proteínas de Neoplasias , Receptores de Citocinas , Animais , Plaquetas/citologia , Plaquetas/metabolismo , Southern Blotting , Transplante de Medula Óssea , Técnicas de Cultura de Células/métodos , Dimerização , Relação Dose-Resposta a Droga , Eritrócitos/citologia , Eritrócitos/metabolismo , Citometria de Fluxo , Granulócitos/citologia , Granulócitos/metabolismo , Proteínas de Fluorescência Verde , Cinética , Proteínas Luminescentes/metabolismo , Camundongos , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , Fenótipo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-kit , Receptores da Eritropoetina/química , Receptores da Eritropoetina/metabolismo , Receptores de Trombopoetina , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Retroviridae/genética , Fatores de Tempo , Transgenes
15.
Mol Ther ; 19(7): 1287-94, 2011 07.
Artigo em Inglês | MEDLINE | ID: mdl-21326218

RESUMO

We report long-term results from a large animal model of in vivo selection. Nine years ago, we transplanted two dogs (E900 and E958) with autologous marrow CD34(+) cells that had been transduced with a gammaretrovirus vector encoding a conditionally activatable derivative of the thrombopoietin receptor. Receptor activation through administration of a chemical inducer of dimerization (CID) (AP20187 or AP1903) confers a growth advantage. We previously reported responses to two 30-day intravenous (i.v.) courses of AP20187 administered within the first 8 months post-transplantation. We now report responses to 5-day subcutaneous (s.c.) courses of AP20187 or AP1903 at months 14, 90, and 93 (E900), or month 18 (E958), after transplantation. Long-term monitoring showed no rise in transduced cells in the absence of drug. Retroviral insertion site analysis showed that 4 of 6 (E958) and 5 of 12 (E900) transduced hematopoietic cell clones persisted lifelong. Both dogs were euthanized for reasons unrelated to the gene therapy treatment at 8 years 11 months (E958) and 11 years 1 month (E900) of age. Three clones from E900 remained detectable in each of two secondary recipients, one of which was treated with, and responded to, AP1903. Our results demonstrate the feasibility of safely regulating genetically engineered hematopoietic cells over many years.


Assuntos
Gammaretrovirus/genética , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Animais , Células Cultivadas , Reagentes de Ligações Cruzadas/farmacologia , Cães , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Compostos Orgânicos/farmacologia , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia
16.
JCO Precis Oncol ; 6: e2100280, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35294224

RESUMO

PURPOSE: Patients with metastatic triple-negative breast cancer (mTNBC) have poor outcomes. The Intensive Trial of Omics in Cancer (ITOMIC) sought to determine the feasibility and potential efficacy of informing treatment decisions through multiple biopsies of mTNBC deposits longitudinally over time, accompanied by analysis using a distributed network of experts. METHODS: Thirty-one subjects were enrolled and 432 postenrollment biopsies performed (clinical and study-directed) of which 332 were study-directed. Molecular profiling included whole-genome sequencing or whole-exome sequencing, cancer-associated gene panel sequencing, RNA-sequencing, and immunohistochemistry. To afford time for analysis, subjects were initially treated with cisplatin (19 subjects), or another treatment they had not received previously. The results were discussed at a multi-institutional ITOMIC Tumor Board, and a report transmitted to the subject's oncologist who arrived at the final treatment decision in conjunction with the subject. Assistance was provided to access treatments that were predicted to be effective. RESULTS: Multiple biopsies in single settings and over time were safe, and comprehensive analysis was feasible. Two subjects were found to have lung cancer, one had carcinoma of unknown primary site, tumor samples from three subjects were estrogen receptor-positive and from two others, human epidermal growth factor receptor 2-positive. Two subjects withdrew. Thirty-four of 112 recommended treatments were accessed using approved drugs, clinical trials, and single-patient investigational new drugs. After excluding the three subjects with nonbreast cancers and the two subjects who withdrew, 22 of 26 subjects (84.6%) received at least one ITOMIC Tumor Board-recommended treatment. CONCLUSION: Further exploration of this approach in patients with mTNBC is merited.


Assuntos
Neoplasias de Mama Triplo Negativas , Cisplatino/uso terapêutico , Estudos de Viabilidade , Humanos , Técnicas de Diagnóstico Molecular , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
17.
Eur J Neurosci ; 31(2): 349-58, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20074216

RESUMO

Neuregulin-1 (NRG1) has been shown to play a role in glutamatergic neurotransmission and is a risk gene for schizophrenia, in which there is evidence for hypoglutamatergic function. Sensitivity to the behavioural effects of the psychotomimetic N-methyl-D-aspartate receptor antagonists MK-801 and phencyclidine (PCP) was examined in mutant mice with heterozygous deletion of NRG1. Social behaviour (sociability, social novelty preference and dyadic interaction), together with exploratory activity, was assessed following acute or subchronic administration of MK-801 (0.1 and 0.2 mg/kg) or PCP (5 mg/kg). In untreated NRG1 mutants, levels of glutamate, N-acetylaspartate and GABA were determined using high-performance liquid chromatography and regional brain volumes were assessed using magnetic resonance imaging at 7T. NRG1 mutants, particularly males, displayed decreased responsivity to the locomotor-activating effects of acute PCP. Subchronic MK-801 and PCP disrupted sociability and social novelty preference in mutants and wildtypes and reversed the increase in both exploratory activity and social dominance-related behaviours observed in vehicle-treated mutants. No phenotypic differences were demonstrated in N-acetylaspartate, glutamate or GABA levels. The total ventricular and olfactory bulb volume was decreased in mutants. These data indicate a subtle role for NRG1 in modulating several schizophrenia-relevant processes including the effects of psychotomimetic N-methyl-D-aspartate receptor antagonists.


Assuntos
Comportamento Animal/efeitos dos fármacos , Neuregulina-1/metabolismo , Esquizofrenia/fisiopatologia , Comportamento Social , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análise , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Ácido Glutâmico/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuregulina-1/genética , Fenciclidina/farmacologia , Fenótipo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Fatores Sexuais , Ácido gama-Aminobutírico/análise
18.
Stem Cells ; 27(9): 2353-61, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19544471

RESUMO

Despite the prevalence of anemia in cancer, recombinant erythropoietin (Epo) has declined in use because of recent Phase III trials showing more rapid cancer progression and reduced survival in subjects randomized to Epo. Since Epo receptor (EpoR), Jak2, and Hsp70 are well-characterized mediators of Epo signaling in erythroid cells, we hypothesized that Epo might be especially harmful in patients whose tumors express high levels of these effectors. Because of the insensitivity of immunohistochemistry for detecting low level EpoR protein, we developed assays to measure levels of EpoR, Jak2 and Hsp70 mRNA in formalin-fixed paraffin-embedded (FFPE) tumors. We tested 23 archival breast tumors as well as 136 archival head and neck cancers from ENHANCE, a Phase III trial of 351 patients randomized to Epo versus placebo concomitant with radiotherapy following complete resection, partial resection, or no resection of tumor. EpoR, Jak2, and Hsp70 mRNA levels varied >30-fold, >12-fold, and >13-fold across the breast cancers, and >30-fold, >40-fold, and >30-fold across the head and neck cancers, respectively. Locoregional progression-free survival (LPFS) did not differ among patients whose head and neck cancers expressed above- versus below-median levels of EpoR, Jak2 or Hsp70, except in the subgroup of patients with unresected tumors (n = 28), where above-median EpoR, above-median Jak2, and below-median Hsp70 mRNA levels were all associated with significantly poorer LPFS. Our results provide a framework for exploring the relationship between Epo, cancer progression, and survival using archival tumors from other Phase III clinical trials.


Assuntos
Eritropoetina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ensaios Clínicos Fase III como Assunto , Intervalo Livre de Doença , Feminino , Citometria de Fluxo , Proteínas de Choque Térmico HSP70/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imuno-Histoquímica , Janus Quinase 2/genética , Fosforilação , Receptores da Eritropoetina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT5/metabolismo
19.
Dev Cell ; 52(2): 236-250.e7, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31991105

RESUMO

Regulation of embryonic diapause, dormancy that interrupts the tight connection between developmental stage and time, is still poorly understood. Here, we characterize the transcriptional and metabolite profiles of mouse diapause embryos and identify unique gene expression and metabolic signatures with activated lipolysis, glycolysis, and metabolic pathways regulated by AMPK. Lipolysis is increased due to mTORC2 repression, increasing fatty acids to support cell survival. We further show that starvation in pre-implantation ICM-derived mouse ESCs induces a reversible dormant state, transcriptionally mimicking the in vivo diapause stage. During starvation, Lkb1, an upstream kinase of AMPK, represses mTOR, which induces a reversible glycolytic and epigenetically H4K16Ac-negative, diapause-like state. Diapause furthermore activates expression of glutamine transporters SLC38A1/2. We show by genetic and small molecule inhibitors that glutamine transporters are essential for the H4K16Ac-negative, diapause state. These data suggest that mTORC1/2 inhibition, regulated by amino acid levels, is causal for diapause metabolism and epigenetic state.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Blastocisto/metabolismo , Embrião de Mamíferos/citologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células-Tronco Embrionárias/citologia , Técnicas de Inativação de Genes , Camundongos
20.
Science ; 287(5453): 646-50, 2000 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-10649997

RESUMO

Integrase is essential for human immunodeficiency virus-type 1 (HIV-1) replication; however, potent inhibition of the isolated enzyme in biochemical assays has not readily translated into antiviral activity in a manner consistent with inhibition of integration. In this report, we describe diketo acid inhibitors of HIV-1 integrase that manifest antiviral activity as a consequence of their effect on integration. The antiviral activity of these compounds is due exclusively to inhibition of one of the two catalytic functions of integrase, strand transfer.


Assuntos
Acetoacetatos/farmacologia , Fármacos Anti-HIV/farmacologia , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , HIV-1/efeitos dos fármacos , Pirróis/farmacologia , Integração Viral/efeitos dos fármacos , Acetoacetatos/química , Acetoacetatos/metabolismo , Fármacos Anti-HIV/química , Fármacos Anti-HIV/metabolismo , Catálise/efeitos dos fármacos , Técnicas de Cocultura , DNA Circular/biossíntese , DNA Circular/metabolismo , DNA Viral/biossíntese , DNA Viral/metabolismo , Resistência Microbiana a Medicamentos , Integrase de HIV/genética , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/metabolismo , Repetição Terminal Longa de HIV/efeitos dos fármacos , HIV-1/enzimologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Mutação , Pirróis/química , Pirróis/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Linfócitos T/virologia , Transcrição Gênica , Células Tumorais Cultivadas , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA