Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 35(7): e21697, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34085740

RESUMO

The relevance of environmental triggers in Crohn's disease remains poorly explored, despite the well-known association between industrialization and disease onset/progression. We have aimed at evaluating the influence of endocrine disrupting chemicals in CD patients. We performed a prospective observational study on consecutive patients diagnosed of CD. Serum levels of endocrine disruptors, short-chain fatty acids, tryptophan and cytokines were measured. Bacterial-DNA and serum endotoxin levels were also evaluated. Gene expression of ER-α, ER-ß and GPER was measured in PBMCs. All patients were genotyped for NOD2 and ATG16L1 polymorphisms. A series of 200 CD patients (140 in remission, 60 with active disease) was included in the study. Bisphenol A was significantly higher in patients with active disease versus remission and in colonic versus ileal disease. GPER was significantly increased in active patients and correlated with BPA levels. BPA was significantly increased in patients with bacterial-DNA and correlated with serum endotoxin levels, (r = 0.417; P = .003). Serum butyrate and tryptophan levels were significantly lower in patients with bacterial-DNA and an inverse relationship was present between them and BPA levels (r = -0.491; P = .001) (r = -0.611; P = .001). Serum BPA levels correlated with IL-23 (r = 0.807; P = .001) and IL-17A (r = 0.743; P = .001). The multivariate analysis revealed an independent significant contribution of BPA and bacterial-DNA to serum levels of IL-23 and IL-17A. In conclusion, bisphenol A significantly affects systemic inflammatory response in CD patients with gut barrier disruption and dysbiotic microbiota secretory products in blood. These results provide evidence of an endocrine disruptor playing an actual pathogenic role on CD.


Assuntos
Compostos Benzidrílicos/sangue , Doença de Crohn/patologia , Disbiose/complicações , Disruptores Endócrinos/sangue , Sequestradores de Radicais Livres/sangue , Fenóis/sangue , Síndrome de Resposta Inflamatória Sistêmica/patologia , Adulto , Doença de Crohn/sangue , Doença de Crohn/etiologia , Citocinas/sangue , DNA Bacteriano/sangue , Feminino , Humanos , Masculino , Estudos Prospectivos , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/etiologia
2.
Macromol Rapid Commun ; 39(21): e1800529, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30199132

RESUMO

Sulfur-containing polymers and poly(ionic liquid)s are emerging macromolecules with unique properties and applications. This article shows the first integration of these two polymer families, leading to materials with a unique combination of properties. The synthetic strategy toward sulfur-containing poly(ionic liquid)s involves first the copolymerization of elemental sulfur with 4-vinylbenzyl chloride and subsequent quaternization of the alkyl chloride group using N-methyl imidazole. The synthetic pathway is completed by the anion exchange reaction of the poly(sulfur-co-4-vinylbenzyl imidazolium chloride) by a sulphonamide anion. The obtained polymers are fully characterized by NMR, FTIR, SEC, DSC, and TGA. The sulfur poly(ionic liquid)s combine some properties related to its poly(ionic liquid) nature, such as anion-dependent solubility (water vs organic solvents) and high ionic conductivity as well as properties related to its sulfur content, such as redox activity.


Assuntos
Líquidos Iônicos/química , Polímeros/química , Enxofre/química , Estrutura Molecular , Oxirredução , Polímeros/síntese química , Solubilidade
3.
Polymers (Basel) ; 12(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33203005

RESUMO

The trend of research towards more sustainable materials is pushing the application of biopolymers in a variety of unexplored fields. In this regard, hydrogels are attracting significant attention as electrolytes for flexible electrochemical devices thanks to their combination of ionic conductivity and mechanical properties. In this context, we present the use of cellulose-based hydrogels as aqueous electrolytes for electrochemical devices. These materials were obtained by crosslinking of hydroxyethyl cellulose (HEC) with divinyl sulfone (DVS) in the presence of carboxymethyl cellulose (CMC), creating a semi-IPN structure. The reaction was confirmed by NMR and FTIR. The small-amplitude oscillatory shear (SAOS) technique revealed that the rheological properties could be conveniently varied by simply changing the gel composition. Additionally, the hydrogels presented high ionic conductivity in the range of mS cm-1. The ease of synthesis and processing of the hydrogels allowed the assembly of an all-in-one electrochromic device (ECD) with high transmittance variation, improved switching time and good color efficiency. On the other hand, the swelling ability of the hydrogels permits the tuning of the electrolyte to improve the performance of a printed Zinc/MnO2 primary battery. The results prove the potential of cellulose-based hydrogels as electrolytes for more sustainable electrochemical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA