Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(14): 146001, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084431

RESUMO

We employ a functional renormalization group approach to ascertain the pairing mechanism and symmetry of the superconducting phase observed in rhombohedral trilayer graphene. Superconductivity in this system occurs in a regime of carrier density and displacement field with a weakly distorted annular Fermi sea. We find that repulsive Coulomb interactions can induce electron pairing on the Fermi surface by taking advantage of momentum-space structure associated with the finite width of the Fermi sea annulus. The degeneracy between spin-singlet and spin-triplet pairing is lifted by valley-exchange interactions that strengthen under the RG flow and develop nontrivial momentum-space structure. We find that the leading pairing instability is d-wave-like and spin singlet, and that the theoretical phase diagram versus carrier density and displacement field agrees qualitatively with experiment.

2.
Sci Rep ; 5: 11492, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26205845

RESUMO

A new method for finding electronic structure and wavefunctions of electrons in quasiperiodic potential is introduced. To obtain results it uses slightly modified Schrödinger equation in spaces of dimensionality higher than physical space. It enables to get exact results for quasicrystals without expensive non-exact calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA