RESUMO
Even before genome sequencing, genetic resources have supported species management and breeding programs. Current technologies, such as long-read sequencing, resolve complex genomic regions, like those rich in repeats or high in GC content. Improved genome contiguity enhances accuracy in identifying structural variants (SVs) and transposable elements (TEs). We present an improved genome assembly and SV catalogue for the Australasian snapper (Chrysophrys auratus). The new assembly is more contiguous, allowing for putative identification of 14 centromeres and transfer of 26,115 gene annotations from yellowfin seabream. Compared to the previous assembly, 35,000 additional SVs, including larger and more complex rearrangements, were annotated. SVs and TEs exhibit a distribution pattern skewed towards chromosome ends, likely influenced by recombination. Some SVs overlap with growth-related genes, underscoring their significance. This upgraded genome serves as a foundation for studying natural and artificial selection, offers a reference for related species, and sheds light on genome dynamics shaped by evolution.
Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Animais , Variação Estrutural do Genoma , Perciformes/genética , Genoma , Genômica/métodos , Anotação de Sequência Molecular , Análise de Sequência de DNA/métodosRESUMO
Genome size (GS) variation is a fundamental biological characteristic; however, its evolutionary causes and consequences are the topic of ongoing debate. Whether GS is a neutral trait or one subject to selective pressures, and how strong these selective pressures are, may remain open questions. Fundamentally, the genomic sequences responsible for this variation directly impact the potential evolutionary outcomes and, equally, are the targets of different evolutionary pressures. For example, duplications and deletions of genic regions (large or small) can have immediate and drastic phenotypic effects, while an expansion or contraction of non-coding DNA is less likely to cause catastrophic phenotypic effects. However, in the long term, the accumulation or deletion of ncDNA is likely to have larger effects. Modern sequencing technologies are allowing for the dissection of these proximate causes, but a combination of these new technologies with more traditional evolutionary experiments and approaches could revolutionize this debate and potentially resolve many of these arguments. Here, I discuss an ambitious way forward for GS research, putting it in context of historical debates, theories and sometimes contradictory evidence, and highlighting the promise of combining new sequencing technologies and analytical developments with more traditional experimental evolution approaches.
Assuntos
Evolução Molecular , Tamanho do Genoma , Animais , GenômicaRESUMO
BACKGROUND: The Australian black swan (Cygnus atratus) is an iconic species with contrasting plumage to that of the closely related northern hemisphere white swans. The relative geographic isolation of the black swan may have resulted in a limited immune repertoire and increased susceptibility to infectious diseases, notably infectious diseases from which Australia has been largely shielded. Unlike mallard ducks and the mute swan (Cygnus olor), the black swan is extremely sensitive to highly pathogenic avian influenza. Understanding this susceptibility has been impaired by the absence of any available swan genome and transcriptome information. RESULTS: Here, we generate the first chromosome-length black and mute swan genomes annotated with transcriptome data, all using long-read based pipelines generated for vertebrate species. We use these genomes and transcriptomes to show that unlike other wild waterfowl, black swans lack an expanded immune gene repertoire, lack a key viral pattern-recognition receptor in endothelial cells and mount a poorly controlled inflammatory response to highly pathogenic avian influenza. We also implicate genetic differences in SLC45A2 gene in the iconic plumage of the black swan. CONCLUSION: Together, these data suggest that the immune system of the black swan is such that should any avian viral infection become established in its native habitat, the black swan would be in a significant peril.
Assuntos
Anseriformes , Influenza Aviária , Animais , Transcriptoma , Células Endoteliais , AustráliaRESUMO
Intraspecific genome size (GS) variation in Eukaryotes is often mediated by additional, nonessential genomic elements. Physically, such additional elements may be represented by supernumerary (B-)chromosomes or by large heterozygous insertions into the regular chromosome set. Here we analyze meiotic transmission patterns of Megabase-sized, independently segregating genomic elements (ISEs) in Brachionus asplanchnoidis, a planktonic rotifer that displays an up to two-fold intraspecific GS variation due to variation in size and number of these elements. To gain insights into the meiotic transmission patterns of ISEs, we measured GS distributions of haploid males produced by individual mother clones using flow cytometry and compared these distributions to theoretical distributions expected under a range of scenarios. These scenarios considered transmission biases resembling (meiotic) drive, or cosegregation biases, e.g., if pairs of ISEs preferentially migrated towards the same pole during meiosis. We found that the inferred transmission patterns were diverse and ranged from positive biases (suggesting drive) to negative biases (suggesting drag), depending on rotifer clone and its ISE composition. Additionally, we obtained evidence for a negative cosegregation bias in some of the rotifer clones, i.e., pairs of ISEs exhibited an increased probability of migrating towards opposite poles during meiosis. Strikingly, these transmission and segregation patterns were more similar among members of a genetically homogeneous inbred line than among outbred members of the population. Comparisons between early and late stages of haploid male embryonic development (e.g., young synchronized male eggs vs. hatched males) showed very similar GS distributions, suggesting that transmission biases occur very early in male development, or even during meiosis. Very large genome size was associated with reduced male embryonic survival, suggesting that excessive amounts of ISEs might be detrimental to male fitness. Altogether, our results indicate considerable functional diversity of ISEs in B. asplanchnoidis, with consequences on meiotic transmission and embryonic survival.
Assuntos
Rotíferos , Feminino , Animais , Masculino , Tamanho do Genoma , Rotíferos/genética , Meiose/genética , Ovos , GenômicaRESUMO
It is a broadly observed pattern that the non-recombining regions of sex-limited chromosomes (Y and W) accumulate more repeats than the rest of the genome, even in species like birds with a low genome-wide repeat content. Here, we show that in birds with highly heteromorphic sex chromosomes, the W chromosome has a transposable element (TE) density of greater than 55% compared to the genome-wide density of less than 10%, and contains over half of all full-length (thus potentially active) endogenous retroviruses (ERVs) of the entire genome. Using RNA-seq and protein mass spectrometry data, we were able to detect signatures of female-specific ERV expression. We hypothesize that the avian W chromosome acts as a refugium for active ERVs, probably leading to female-biased mutational load that may influence female physiology similar to the 'toxic-Y' effect in Drosophila males. Furthermore, Haldane's rule predicts that the heterogametic sex has reduced fertility in hybrids. We propose that the excess of W-linked active ERVs over the rest of the genome may be an additional explanatory variable for Haldane's rule, with consequences for genetic incompatibilities between species through TE/repressor mismatches in hybrids. Together, our results suggest that the sequence content of female-specific W chromosomes can have effects far beyond sex determination and gene dosage. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.