Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Ann Intensive Care ; 13(1): 17, 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36906875

RESUMO

BACKGROUND: Profound lymphopenia is an independent predictor of adverse clinical outcomes in sepsis. Interleukin-7 (IL-7) is essential for lymphocyte proliferation and survival. A previous phase II study showed that CYT107, a glycosylated recombinant human IL-7, administered intramuscularly reversed sepsis-induced lymphopenia and improved lymphocyte function. Thepresent study evaluated intravenous administration of CYT107. This prospective, double-blinded, placebo-controlled trial was designed to enroll 40 sepsis patients, randomized 3:1 to CYT107 (10 µg/kg) or placebo, for up to 90 days. RESULTS: Twenty-one patients were enrolled (fifteen CYT107 group, six placebo group) at eight French and two US sites. The study was halted early because three of fifteen patients receiving intravenous CYT107 developed fever and respiratory distress approximately 5-8 h after drug administration. Intravenous administration of CYT107 resulted in a two-threefold increase in absolute lymphocyte counts (including in both CD4+ and CD8+ T cells (all p < 0.05)) compared to placebo. This increase was similar to that seen with intramuscular administration of CYT107, was maintained throughout follow-up, reversed severe lymphopenia and was associated with increase in organ support free days (OSFD). However, intravenous CYT107 produced an approximately 100-fold increase in CYT107 blood concentration compared with intramuscular CYT107. No cytokine storm and no formation of antibodies to CYT107 were observed. CONCLUSION: Intravenous CYT107 reversed sepsis-induced lymphopenia. However, compared to intramuscular CYT107 administration, it was associated with transient respiratory distress without long-term sequelae. Because of equivalent positive laboratory and clinical responses, more favorable pharmacokinetics, and better patient tolerability, intramuscular administration of CYT107 is preferable. TRIAL REGISTRATION: Clinicaltrials.gov, NCT03821038. Registered 29 January 2019, https://clinicaltrials.gov/ct2/show/NCT03821038?term=NCT03821038&draw=2&rank=1 .

2.
J Leukoc Biol ; 109(4): 697-708, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33264454

RESUMO

A defining feature of protracted sepsis is development of immunosuppression that is thought to be a major driving force in the morbidity and mortality associated with the syndrome. The immunosuppression that occurs in sepsis is characterized by profound apoptosis-induced depletion of CD4 and CD8 T cells and severely impaired T cell function. OX40, a member of the TNF receptor superfamily, is a positive co-stimulatory molecule expressed on activated T cells. When engaged by OX40 ligand, OX40 stimulates T cell proliferation and shifts the cellular immune phenotype toward TH1 with increased production of cytokines that are essential for control of invading pathogens. The purpose of the present study was to determine if administration of agonistic Ab to OX40 could reverse sepsis-induced immunosuppression, restore T cell function, and improve survival in a clinically relevant animal model of sepsis. The present study demonstrates that OX40 agonistic Ab reversed sepsis-induced impairment of T cell function, increased T cell IFN-γ production, increased the number of immune effector cells, and improved survival in the mouse cecal ligation and puncture model of sepsis. Importantly, OX40 agonistic Ab was not only effective in murine sepsis but also improved T effector cell function in PBMCs from patients with sepsis. The present results provide support for the use of immune adjuvants that target T cell depletion and T cell dysfunction in the therapy of sepsis-induced immunosuppression. In addition to the checkpoint inhibitors anti-PD-1 and anti-PD-L1, OX40 agonistic Ab may be a new therapeutic approach to the treatment of this highly lethal disorder.


Assuntos
Anticorpos/uso terapêutico , Terapia de Imunossupressão , Receptores OX40/agonistas , Sepse/tratamento farmacológico , Sepse/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Ceco/patologia , Estado Terminal , Feminino , Granulócitos/metabolismo , Humanos , Hipersensibilidade Tardia/imunologia , Interferon gama/metabolismo , Ligadura , Contagem de Linfócitos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Punções , Receptores OX40/metabolismo , Análise de Sobrevida , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
3.
Crit Care Explor ; 3(7): e0500, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34345826

RESUMO

BACKGROUND: Immunotherapy treatment for coronavirus disease 2019 combined with antiviral therapy and supportive care remains under intense investigation. However, the capacity to distinguish patients who would benefit from immunosuppressive or immune stimulatory therapies remains insufficient. Here, we present a patient with severe coronavirus disease 2019 with a defective immune response, treated successfully with interleukin-7 on compassionate basis with resultant improved adaptive immune function. CASE SUMMARY: A previously healthy 43-year-old male developed severe acute respiratory distress syndrome due to the severe acute respiratory syndrome coronavirus 2 virus with acute hypoxemic respiratory failure and persistent, profound lymphopenia. Functional analysis demonstrated depressed lymphocyte function and few antigen-specific T cells. Interleukin-7 administration resulted in reversal of lymphopenia and improved T-cell function. Respiratory function and clinical status rapidly improved, and he was discharged home. Whole exome sequencing identified a deleterious autosomal dominant mutation in TICAM1, associated with a dysfunctional type I interferon antiviral response with increased severity of coronavirus disease 2019 disease. CONCLUSIONS: Immunoadjuvant therapies to boost host immunity may be efficacious in life-threatening severe coronavirus disease 2019 infections, particularly by applying a precision medicine approach in selecting patients expressing an immunosuppressive phenotype.

4.
Crit Care Explor ; 3(3): e0374, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33786450

RESUMO

OBJECTIVES: Since the beginning of the coronavirus disease 2019 pandemic, hundreds of thousands of patients have been treated in ICUs across the globe. The severe acute respiratory syndrome-associated coronavirus 2 virus enters cells via the angiotensin-converting enzyme 2 receptor and activates several distinct inflammatory pathways, resulting in hematologic abnormalities and dysfunction in respiratory, cardiac, gastrointestinal renal, endocrine, dermatologic, and neurologic systems. This review summarizes the current state of research in coronavirus disease 2019 pathophysiology within the context of potential organ-based disease mechanisms and opportunities for translational research. DATA SOURCES: Investigators from the Research Section of the Society of Critical Care Medicine were selected based on expertise in specific organ systems and research focus. Data were obtained from searches conducted in Medline via the PubMed portal, Directory of Open Access Journals, Excerpta Medica database, Latin American and Caribbean Health Sciences Literature, and Web of Science from an initial search from December 2019 to October 15, 2020, with a revised search to February 3, 2021. The medRxiv, Research Square, and clinical trial registries preprint servers also were searched to limit publication bias. STUDY SELECTION: Content experts selected studies that included mechanism-based relevance to the severe acute respiratory syndrome-associated coronavirus 2 virus or coronavirus disease 2019 disease. DATA EXTRACTION: Not applicable. DATA SYNTHESIS: Not applicable. CONCLUSIONS: Efforts to improve the care of critically ill coronavirus disease 2019 patients should be centered on understanding how severe acute respiratory syndrome-associated coronavirus 2 infection affects organ function. This review articulates specific targets for further research.

5.
JCI Insight ; 5(17)2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32687484

RESUMO

COVID-19-associated morbidity and mortality have been attributed to a pathologic host response. Two divergent hypotheses have been proposed: hyperinflammatory cytokine storm; and failure of host protective immunity that results in unrestrained viral dissemination and organ injury. A key explanation for the inability to address this controversy has been the lack of diagnostic tools to evaluate immune function in COVID-19 infections. ELISpot, a highly sensitive, functional immunoassay, was employed in 27 patients with COVID-19, 51 patients with sepsis, 18 critically ill nonseptic (CINS) patients, and 27 healthy control volunteers to evaluate adaptive and innate immune status by quantitating T cell IFN-É£ and monocyte TFN-α production. Circulating T cell subsets were profoundly reduced in COVID-19 patients. Additionally, stimulated blood mononuclear cells produced less than 40%-50% of the IFN-É£ and TNF-α observed in septic and CINS patients, consistent with markedly impaired immune effector cell function. Approximately 25% of COVID-19 patients had increased IL-6 levels that were not associated with elevations in other canonical proinflammatory cytokines. Collectively, these findings support the hypothesis that COVID-19 suppresses host functional adaptive and innate immunity. Importantly, IL-7 administered ex vivo restored T cell IFN-É£ production in COVID-19 patients. Thus, ELISpot may functionally characterize host immunity in COVID-19 and inform prospective therapies.


Assuntos
Imunidade Adaptativa/imunologia , Infecções por Coronavirus/imunologia , Síndrome da Liberação de Citocina/imunologia , Tolerância Imunológica/imunologia , Imunidade Inata/imunologia , Pneumonia Viral/imunologia , Sepse/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus , COVID-19 , Estudos de Casos e Controles , Estado Terminal , ELISPOT , Feminino , Voluntários Saudáveis , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-6/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Pandemias , SARS-CoV-2 , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
6.
JCI Insight ; 3(5)2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29515037

RESUMO

BACKGROUND: A defining pathophysiologic feature of sepsis is profound apoptosis-induced death and depletion of CD4+ and CD8+ T cells. Interleukin-7 (IL-7) is an antiapoptotic common γ-chain cytokine that is essential for lymphocyte proliferation and survival. Clinical trials of IL-7 in over 390 oncologic and lymphopenic patients showed that IL-7 was safe, invariably increased CD4+ and CD8+ lymphocyte counts, and improved immunity. METHODS: We conducted a prospective, randomized, double-blind, placebo-controlled trial of recombinant human IL-7 (CYT107) in patients with septic shock and severe lymphopenia. Twenty-seven patients at academic sites in France and the United States received CYT107 or placebo for 4 weeks. Primary aims were to determine the safety of CYT107 in sepsis and its ability to reverse lymphopenia. RESULTS: CYT107 was well tolerated without evidence of inducing cytokine storm or worsening inflammation or organ dysfunction. CYT107 caused a 3- to 4-fold increase in absolute lymphocyte counts and in circulating CD4+ and CD8+ T cells that persisted for weeks after drug administration. CYT107 also increased T cell proliferation and activation. CONCLUSIONS: This is the first trial of an immunoadjuvant therapy targeting defects in adaptive immunity in patients with sepsis. CYT107 reversed the marked loss of CD4+ and CD8+ immune effector cells, a hallmark of sepsis and a likely key mechanism in its morbidity and mortality. CYT107 represents a potential new way forward in the treatment of patients with sepsis by restoring adaptive immunity. Such immune-based therapy should be broadly protective against diverse pathogens including multidrug resistant bacteria that preferentially target patients with impaired immunity. TRIAL REGISTRATION: Trials registered at clinicaltrials.gov: NCT02640807 and NCT02797431. FUNDING: Revimmune, NIH National Institute of General Medical Sciences GM44118.


Assuntos
Tolerância Imunológica/efeitos dos fármacos , Interleucina-7/administração & dosagem , Ativação Linfocitária/efeitos dos fármacos , Linfopenia/tratamento farmacológico , Choque Séptico/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Método Duplo-Cego , Humanos , Interleucina-7/efeitos adversos , Contagem de Linfócitos , Linfopenia/sangue , Linfopenia/imunologia , Linfopenia/mortalidade , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Choque Séptico/sangue , Choque Séptico/imunologia , Choque Séptico/mortalidade , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA