Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(7): 1098-1109, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37301203

RESUMO

Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico , Ataxia Cerebelar/genética , Fenótipo , Ataxia/genética , Testes Genéticos , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Ubiquitina-Proteína Ligases/genética
2.
Mov Disord ; 39(1): 141-151, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964426

RESUMO

BACKGROUND: The ITPR1 gene encodes the inositol 1,4,5-trisphosphate (IP3 ) receptor type 1 (IP3 R1), a critical player in cerebellar intracellular calcium signaling. Pathogenic missense variants in ITPR1 cause congenital spinocerebellar ataxia type 29 (SCA29), Gillespie syndrome (GLSP), and severe pontine/cerebellar hypoplasia. The pathophysiological basis of the different phenotypes is poorly understood. OBJECTIVES: We aimed to identify novel SCA29 and GLSP cases to define core phenotypes, describe the spectrum of missense variation across ITPR1, standardize the ITPR1 variant nomenclature, and investigate disease progression in relation to cerebellar atrophy. METHODS: Cases were identified using next-generation sequencing through the Deciphering Developmental Disorders study, the 100,000 Genomes project, and clinical collaborations. ITPR1 alternative splicing in the human cerebellum was investigated by quantitative polymerase chain reaction. RESULTS: We report the largest, multinational case series of 46 patients with 28 unique ITPR1 missense variants. Variants clustered in functional domains of the protein, especially in the N-terminal IP3 -binding domain, the carbonic anhydrase 8 (CA8)-binding region, and the C-terminal transmembrane channel domain. Variants outside these domains were of questionable clinical significance. Standardized transcript annotation, based on our ITPR1 transcript expression data, greatly facilitated analysis. Genotype-phenotype associations were highly variable. Importantly, while cerebellar atrophy was common, cerebellar volume loss did not correlate with symptom progression. CONCLUSIONS: This dataset represents the largest cohort of patients with ITPR1 missense variants, expanding the clinical spectrum of SCA29 and GLSP. Standardized transcript annotation is essential for future reporting. Our findings will aid in diagnostic interpretation in the clinic and guide selection of variants for preclinical studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Aniridia , Anidrases Carbônicas , Ataxia Cerebelar , Deficiência Intelectual , Transtornos dos Movimentos , Degenerações Espinocerebelares , Humanos , Ataxia Cerebelar/genética , Mutação de Sentido Incorreto/genética , Transtornos dos Movimentos/complicações , Atrofia , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
3.
J Hum Genet ; 67(2): 95-101, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34400773

RESUMO

OBJECTIVE: BCORL1, a transcriptional co-repressor, has a role in cortical migration, neuronal differentiation, maturation, and cerebellar development. We describe BCORL1 as a new genetic cause for major brain malformations. METHODS AND RESULTS: We report three patients from two unrelated families with neonatal onset intractable epilepsy and profound global developmental delay. Brain MRI of two siblings from the first family depicted hypoplastic corpus callosum and septal agenesis (ASP) in the older brother and unilateral perisylvian polymicrogyria (PMG) in the younger one. MRI of the patient from the second family demonstrated complete agenesis of corpus callosum (CC). Whole Exome Sequencing revealed a novel hemizygous variant in NM_021946.5 (BCORL1):c.796C>T (p.Pro266Ser) in the two siblings from the first family and the NM_021946.5 (BCORL1): c.3376G>A; p.Asp1126Asn variant in the patient from the second family, both variants inherited from healthy mothers. We reviewed the patients' charts and MRIs and compared the phenotype to the other published BCORL1-related cases. Brain malformations have not been previously described in association with the BCORL1 phenotype. We discuss the potential influence of BCORL1 on brain development. CONCLUSIONS: We suggest that BCORL1 variants present with a spectrum of neurodevelopmental disorders and can lead to major brain malformations originating at different stages of fetal development. We suggest adding BCORL1 to the genetic causes of PMG, ASP, and CC dysgenesis.


Assuntos
Agenesia do Corpo Caloso/genética , Encéfalo/metabolismo , Malformações do Sistema Nervoso/genética , Polimicrogiria/genética , Proteínas Repressoras/genética , Septo Pelúcido/metabolismo , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Saúde da Família , Humanos , Lactente , Imageamento por Ressonância Magnética/métodos , Masculino , Mutação , Septo Pelúcido/anormalidades , Sequenciamento do Exoma/métodos
4.
Mov Disord ; 37(7): 1547-1554, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35722775

RESUMO

BACKGROUND: Most reported patients carrying GNAO1 mutations showed a severe phenotype characterized by early-onset epileptic encephalopathy and/or chorea. OBJECTIVE: The aim was to characterize the clinical and genetic features of patients with mild GNAO1-related phenotype with prominent movement disorders. METHODS: We included patients diagnosed with GNAO1-related movement disorders of delayed onset (>2 years). Patients experiencing either severe or profound intellectual disability or early-onset epileptic encephalopathy were excluded. RESULTS: Twenty-four patients and 1 asymptomatic subject were included. All patients showed dystonia as prominent movement disorder. Dystonia was focal in 1, segmental in 6, multifocal in 4, and generalized in 13. Six patients showed adolescence or adulthood-onset dystonia. Seven patients presented with parkinsonism and 3 with myoclonus. Dysarthria was observed in 19 patients. Mild and moderate ID were present in 10 and 2 patients, respectively. CONCLUSION: We highlighted a mild GNAO1-related phenotype, including adolescent-onset dystonia, broadening the clinical spectrum of this condition. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Distúrbios Distônicos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Transtornos dos Movimentos , Transtornos Parkinsonianos , Distonia/genética , Distúrbios Distônicos/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Humanos , Transtornos dos Movimentos/genética , Transtornos Parkinsonianos/genética , Fenótipo
5.
Brain ; 143(10): 2929-2944, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979048

RESUMO

Bi-allelic loss-of-function variants in genes that encode subunits of the adaptor protein complex 4 (AP-4) lead to prototypical yet poorly understood forms of childhood-onset and complex hereditary spastic paraplegia: SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1) and SPG52 (AP4S1). Here, we report a detailed cross-sectional analysis of clinical, imaging and molecular data of 156 patients from 101 families. Enrolled patients were of diverse ethnic backgrounds and covered a wide age range (1.0-49.3 years). While the mean age at symptom onset was 0.8 ± 0.6 years [standard deviation (SD), range 0.2-5.0], the mean age at diagnosis was 10.2 ± 8.5 years (SD, range 0.1-46.3). We define a set of core features: early-onset developmental delay with delayed motor milestones and significant speech delay (50% non-verbal); intellectual disability in the moderate to severe range; mild hypotonia in infancy followed by spastic diplegia (mean age: 8.4 ± 5.1 years, SD) and later tetraplegia (mean age: 16.1 ± 9.8 years, SD); postnatal microcephaly (83%); foot deformities (69%); and epilepsy (66%) that is intractable in a subset. At last follow-up, 36% ambulated with assistance (mean age: 8.9 ± 6.4 years, SD) and 54% were wheelchair-dependent (mean age: 13.4 ± 9.8 years, SD). Episodes of stereotypic laughing, possibly consistent with a pseudobulbar affect, were found in 56% of patients. Key features on neuroimaging include a thin corpus callosum (90%), ventriculomegaly (65%) often with colpocephaly, and periventricular white-matter signal abnormalities (68%). Iron deposition and polymicrogyria were found in a subset of patients. AP4B1-associated SPG47 and AP4M1-associated SPG50 accounted for the majority of cases. About two-thirds of patients were born to consanguineous parents, and 82% carried homozygous variants. Over 70 unique variants were present, the majority of which are frameshift or nonsense mutations. To track disease progression across the age spectrum, we defined the relationship between disease severity as measured by several rating scales and disease duration. We found that the presence of epilepsy, which manifested before the age of 3 years in the majority of patients, was associated with worse motor outcomes. Exploring genotype-phenotype correlations, we found that disease severity and major phenotypes were equally distributed among the four subtypes, establishing that SPG47, SPG50, SPG51 and SPG52 share a common phenotype, an 'AP-4 deficiency syndrome'. By delineating the core clinical, imaging, and molecular features of AP-4-associated hereditary spastic paraplegia across the age spectrum our results will facilitate early diagnosis, enable counselling and anticipatory guidance of affected families and help define endpoints for future interventional trials.


Assuntos
Complexo 4 de Proteínas Adaptadoras/genética , Corpo Caloso/diagnóstico por imagem , Imageamento por Ressonância Magnética/tendências , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Adulto Jovem
6.
Hum Mutat ; 41(4): 837-849, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31898846

RESUMO

IFIH1 gain-of-function has been reported as a cause of a type I interferonopathy encompassing a spectrum of autoinflammatory phenotypes including Aicardi-Goutières syndrome and Singleton Merten syndrome. Ascertaining patients through a European and North American collaboration, we set out to describe the molecular, clinical and interferon status of a cohort of individuals with pathogenic heterozygous mutations in IFIH1. We identified 74 individuals from 51 families segregating a total of 27 likely pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all mutation carriers, were clinically asymptomatic (with seven of these aged over 50 years). All mutations were associated with enhanced type I interferon signaling, including six variants (22%) which were predicted as benign according to multiple in silico pathogenicity programs. The identified mutations cluster close to the ATP binding region of the protein. These data confirm variable expression and nonpenetrance as important characteristics of the IFIH1 genotype, a consistent association with enhanced type I interferon signaling, and a common mutational mechanism involving increased RNA binding affinity or decreased efficiency of ATP hydrolysis and filament disassembly rate.


Assuntos
Mutação com Ganho de Função , Estudos de Associação Genética , Genótipo , Helicase IFIH1 Induzida por Interferon/genética , Fenótipo , Alelos , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Helicase IFIH1 Induzida por Interferon/química , Masculino , Modelos Moleculares , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/genética , Conformação Proteica , Relação Estrutura-Atividade
7.
Neurogenetics ; 21(4): 243-249, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32424628

RESUMO

Iron-sulfur cluster assembly 2 (ISCA2)-related multiple mitochondrial dysfunction syndrome 4 (MMDS4) is a fatal autosomal recessive mitochondrial leukoencephalopathy. The disease typically manifests with rapid neurodevelopmental deterioration during the first months of life leading to a vegetative state and early death. MRI demonstrates a demyelinating leukodystrophy. We describe an eleven-year-old boy with a milder phenotype of ISCA2 related disorder manifesting as: normal early development, acute infantile neurologic deterioration leading to stable spastic quadriparesis, optic atrophy and mild cognitive impairment. The first MRI demonstrated a diffuse demyelinating leukodystrophy. A sequential MRI revealed white matter rarefaction with well-delineated cysts. The patient harbors two novel bi-allelic variants (p.Ala2Asp and p.Pro138Arg) in ISCA2 inherited from heterozygous carrier parents. This report expands the clinical spectrum of ISCA2-related disorders to include a milder phenotype with a longer life span and better psychomotor function and cavitating leukodystrophy on MRI. We discuss the possible genetic explanation for the different presentation.


Assuntos
Encéfalo/diagnóstico por imagem , Estudos de Associação Genética , Proteínas Ferro-Enxofre/genética , Leucoencefalopatias/genética , Doenças Mitocondriais/genética , Alelos , Criança , DNA Mitocondrial/genética , Exoma , Variação Genética , Heterozigoto , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Mutação , Fenótipo
8.
Am J Med Genet A ; 182(1): 93-103, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622028

RESUMO

White matter (WM) signal abnormalities are demonstrated in various neurodevelopmental disorders on brain magnetic resonance imaging (MRI). The pattern of WM abnormalities can aid in the diagnostic process. This study aims to characterize the WM changes found in microdeletion/microduplication syndromes. Thirteen patients with neurodevelopmental disorders due to copy number variations were collected from a cohort of children with evidence of WM abnormalities on brain MRI, in two medical centers. A pediatric neuroradiologist blindly interpreted the MRI scans. Clinical and genetic findings were retrospectively extracted from the medical records. WM changes included: multifocal (10/13) periventricular (12/13) and subcortical (5/13) signal abnormalities and WM volume loss (6/13). Dysgenesis of the corpus callosum was depicted in 12/13. The main clinical features were: global developmental delay (13/13), hypotonia (11/13), epilepsy (10/13), dysmorphic features (9/13), microcephaly (6/13), short stature (6/13), and systemic involvement (6/13). We showed that different chromosomal micro-rearrangement syndromes share similar MRI patterns of nonspecific multifocal predominantly periventricular WM changes associated with corpus callosum dysgenesis with or without WM and gray matter loss. Hence, the association of these features in a patient evaluated for global developmental delay/intellectual disability suggests a chromosomal micro-rearrangement syndrome, and a chromosomal microarray analysis should be performed.


Assuntos
Encéfalo/metabolismo , Cromossomos/genética , Variações do Número de Cópias de DNA/genética , Leucoencefalopatias/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Adolescente , Agenesia do Corpo Caloso/diagnóstico por imagem , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/patologia , Transtornos Dismórficos Corporais/diagnóstico por imagem , Transtornos Dismórficos Corporais/genética , Transtornos Dismórficos Corporais/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Catarata/congênito , Catarata/diagnóstico por imagem , Catarata/genética , Catarata/patologia , Criança , Estudos de Coortes , Córnea/anormalidades , Córnea/diagnóstico por imagem , Córnea/patologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/patologia , Feminino , Predisposição Genética para Doença , Humanos , Hipogonadismo/diagnóstico por imagem , Hipogonadismo/genética , Hipogonadismo/patologia , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/patologia , Imageamento por Ressonância Magnética , Masculino , Microcefalia/diagnóstico por imagem , Microcefalia/genética , Microcefalia/patologia , Hipotonia Muscular/diagnóstico por imagem , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Atrofia Óptica/diagnóstico por imagem
9.
Am J Med Genet A ; 182(10): 2207-2213, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33001581

RESUMO

The clinical presentation of bilateral perisylvian polymicrogyria (PMG) is highly variable, including oromotor dysfunction, epilepsy, intellectual disability, and pyramidal signs. Extrapyramidal features are extremely rare. We present four apparently unrelated patients with a unique association of PMG with dystonia. The clinical, genetic, and radiologic features are described and possible mechanisms of dystonia are discussed. All patients were female and two were born to consanguineous families. All presented with early childhood onset dystonia. Other neurologic symptoms and signs classically seen in bilateral perisylvian PMG were observed, including oromotor dysfunction and speech abnormalities ranging from dysarthria to anarthria (4/4), pyramidal signs (3/4), hypotonia (3/4), postnatal microcephaly (1/4), and seizures (1/4). Neuroimaging showed a unique pattern of bilateral PMG with an infolded cortex originating primarily from the perisylvian region in three out of four patients. Whole exome sequencing was performed in two out of four patients and did not reveal pathogenic variants in known genes for cortical malformations or movement disorders. The dystonia seen in our patients is not described in bilateral PMG and suggests an underlying mechanism of impaired connectivity within the motor network or compromised cortical inhibition. The association of bilateral PMG with dystonia in our patients may represent a new neurogenetic disorder.


Assuntos
Anormalidades Múltiplas/diagnóstico , Distonia/diagnóstico , Distúrbios Distônicos/diagnóstico , Deficiência Intelectual/diagnóstico , Malformações do Desenvolvimento Cortical/diagnóstico , Polimicrogiria/diagnóstico , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Criança , Pré-Escolar , Distonia/complicações , Distonia/diagnóstico por imagem , Distonia/fisiopatologia , Distúrbios Distônicos/diagnóstico por imagem , Distúrbios Distônicos/fisiopatologia , Eletroencefalografia , Epilepsia/complicações , Epilepsia/diagnóstico , Epilepsia/diagnóstico por imagem , Epilepsia/fisiopatologia , Feminino , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/fisiopatologia , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/fisiopatologia , Neuroimagem/métodos , Polimicrogiria/complicações , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/fisiopatologia , Adulto Jovem
10.
Am J Med Genet A ; 179(8): 1575-1579, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31168944

RESUMO

Roughly 40 genes have been linked to autosomal recessive (AR) ataxia syndromes. Of these, at least 10 encode gene products localizing to the mitochondrion. tRNA-histidine guanylyltransferase 1 like (THG1L) localizes to the mitochondrion and catalyzes the 3'-5' addition of guanine to the 5'-end of tRNA-histidine. Previously, three siblings with early onset cerebellar dysfunction, developmental delay, pyramidal signs, and cerebellar atrophy on brain magnetic resonance imaging (MRI) were reported to carry homozygous V55A mutations in THG1L. Fibroblasts derived from these individuals showed abnormal mitochondrial networks when subjected to obligatory oxidative phosphorylation. A carrier rate of 0.8%, but no THG1L V55A homozygotes, was found in a cohort of 3,232 unrelated Ashkenazi Jewish individuals, and no homozygotes were found in Exac or gnomAD. This variant is reported with an allelic frequency of 0.02% in Exac, and is not listed in gnomAD. A similar phenotype was recently reported for another, homozygous variant p.L294P was reported with a similar, but more severely affected phenotype [Shaheen et al. (2019); Genetics in Medicine 21: 545-552]. Here, we report two additional Ashkenazi Jewish patients, carrying the same homozygous V55A mutation. We present bioinformatic analyses of the V55A mutation demonstrating high conservation in metazoan species. We refine the clinical and radiological phenotype and discuss the uniqueness of the clinical course of this novel mitochondrial AR ataxia in comparison to the diverse molecular etiologies and clinical phenotypes of other known mitochondrial AR ataxias.


Assuntos
Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Genes Mitocondriais , Genes Recessivos , Mutação , Nucleotidiltransferases/genética , Fenótipo , Alelos , Cerebelo/anormalidades , Cerebelo/diagnóstico por imagem , Pré-Escolar , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Homozigoto , Humanos , Imageamento por Ressonância Magnética/métodos , Sequenciamento do Exoma
11.
Metab Brain Dis ; 34(4): 1043-1048, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30972688

RESUMO

OPA1 related disorders include: classic autosomal dominant optic atrophy syndrome (ADOA), ADOA plus syndrome and a bi-allelic OPA1 complex neurological disorder. We describe metabolic stroke in a patient with bi-allelic OPA1 mutations. A twelve-year old girl presented with a complex neurological disorder that includes: early onset optic atrophy at one year of age, progressive gait ataxia, dysarthria, tremor and learning impairment. A metabolic stroke occurred at the age of 12 years. The patient was found to harbor a de novo heterozygous frame shift mutation c.1963_1964dupAT; p.Lys656fs (NM_015560.2) and a missense mutation c.1146A > G; Ile382Met (NM_015560.2) inherited from her mother. The mother, aunt, and grandmother are heterozygous for the Ile382Met mutation and are asymptomatic. The co-occurrence of bi-allelic mutations can explain the severity and the early onset of her disease. This case adds to a growing number of patients recently discovered with bi-allelic OPA1 mutations presenting with a complex and early onset neurological disorder resembling Behr syndrome. To the best of our knowledge metabolic stroke has not been described before as an OPA1 related manifestation. It is important to be aware of this clinical feature for a prompt diagnosis and consideration of available treatment.


Assuntos
GTP Fosfo-Hidrolases/genética , Mutação , Atrofia Óptica Autossômica Dominante/complicações , Acidente Vascular Cerebral/complicações , Alelos , Criança , Feminino , Humanos , Atrofia Óptica Autossômica Dominante/genética , Acidente Vascular Cerebral/genética
12.
Neuropediatrics ; 49(4): 246-255, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29801190

RESUMO

OBJECTIVE: This article elucidates a clinical and genetic approach to pediatric early-onset chorea in patients with normal neuroimaging. METHODS: We retrospectively studied patients with onset hyperkinetic movement disorders. Only children with onset of chorea in the first 3 years of life were included, those with an abnormal magnetic resonance imaging (MRI) or electroencephalogram (EEG) were excluded.We studied the movement disorder phenotype by clinical examination and by interpretation of videos and compared our data to the literature. RESULTS: Four patients, aged 2 to 13 years, were diagnosed. Abnormal involuntary movements appeared between the ages of 6 months to 3 years in association with developmental delay. One patient has a close relative with NKX2.1-related chorea. One patient is from Iraqi-Jewish origin. Facial twitches and nocturnal dyskinetic attacks were observed in one.The unique clinical presentation and family history enabled genetic diagnosis by molecular analysis of a specific mutation in two (NKX2.1, OPA3) and Sanger sequencing of a target gene in one (ADCY5). One patient was diagnosed by whole-exome sequencing (WES) (GNAO1). CONCLUSION: By carefully recording the phenotype and genetic background, a single gene can be suspected in some cases. In the rest, we suggest multigene panels or WES study.


Assuntos
Coreia/diagnóstico , Coreia/genética , Adolescente , Idade de Início , Criança , Pré-Escolar , Coreia/epidemiologia , Coreia/etiologia , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Mutação
13.
Neuropediatrics ; 49(2): 123-134, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29258131

RESUMO

Opsoclonus-myoclonus syndrome (OMS) is a neuroinflammatory disorder with pervasive morbidity that warrants better treatments. Twelve children with moderate/severe OMS (total score 23 ± 6) who did not remit to multiple immunotherapies were evaluated for neuroinflammation in a case-control study using cerebrospinal fluid (CSF) lymphocyte subset analysis by flow cytometry, chemokine/cytokine analysis by enzyme-linked immunoadsorption assay (ELISA), and oligoclonal bands by immunofixation with isoelectric focusing. Observations made on empirical treatment with rituximab, IVIg, and tetracosactide combination immunotherapy (coined "RITE-CI") were analyzed. All of the patients tested for multiple inflammatory markers were positive; 75% had ≥3 CSF markers. Fifty percent had CSF oligoclonal bands; 58%, B cell expansion; and 50 to 100%, elevated concentrations of multiple chemokines and neuronal/axonal marker neurofilament light chain. After RITE-CI, total score dropped significantly in the group (-85%, p < 0.0001) from moderate to trace, and by 2 to 4 severity categories in each patient. The 24-week schedule was well tolerated and clinically effective for moderate or severe OMS, as were other schedules. RITE-CI is feasible and effective as rescue therapy and presents an initial option for children with moderate/severe OMS. Though preliminary, the schedule can be adjusted to patient severity, propensity for relapse, and other factors.


Assuntos
Cosintropina/uso terapêutico , Hormônios/uso terapêutico , Imunoglobulinas Intravenosas/uso terapêutico , Fatores Imunológicos/uso terapêutico , Síndrome de Opsoclonia-Mioclonia/terapia , Rituximab/uso terapêutico , Criança , Pré-Escolar , Citocinas/metabolismo , Quimioterapia Combinada , Feminino , Seguimentos , Humanos , Imunização Passiva/métodos , Lactente , Cooperação Internacional , Masculino , Índice de Gravidade de Doença , Resultado do Tratamento
14.
Epilepsia ; 57(11): 1858-1869, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27665735

RESUMO

OBJECTIVE: IQSEC2 is an X-linked gene associated with intellectual disability (ID) and epilepsy. Herein we characterize the epilepsy/epileptic encephalopathy of patients with IQSEC2 pathogenic variants. METHODS: Forty-eight patients with IQSEC2 variants were identified worldwide through Medline search. Two patients were recruited from our early onset epileptic encephalopathy cohort and one patient from personal communication. The 18 patients who have epilepsy in addition to ID are the subject of this study. Information regarding the 18 patients was ascertained by questionnaire provided to the treating clinicians. RESULTS: Six affected individuals had an inherited IQSEC2 variant and 12 had a de novo one (male-to-female ratio, 12:6). The pathogenic variant types were as follows: missense (8), nonsense (5), frameshift (1), intragenic duplications (2), translocation (1), and insertion (1). An epileptic encephalopathy was diagnosed in 9 (50%) of 18 patients. Seizure onset ranged from 8 months to 4 years; seizure types included spasms, atonic, myoclonic, tonic, absence, focal seizures, and generalized tonic-clonic (GTC) seizures. The electroclinical syndromes could be defined in five patients: late-onset epileptic spasms (three) and Lennox-Gastaut or Lennox-Gastaut-like syndrome (two). Seizures were pharmacoresistant in all affected individuals with epileptic encephalopathy. The epilepsy in the other nine patients had a variable age at onset from infancy to 18 years; seizure types included GTC and absence seizures in the hereditary cases and GTC and focal seizures in de novo cases. Seizures were responsive to medical treatment in most cases. All 18 patients had moderate to profound intellectual disability. Developmental regression, autistic features, hypotonia, strabismus, and white matter changes on brain magnetic resonance imaging (MRI) were prominent features. SIGNIFICANCE: The phenotypic spectrum of IQSEC2 disorders includes epilepsy and epileptic encephalopathy. Epileptic encephalopathy is a main clinical feature in sporadic cases. IQSEC2 should be evaluated in both male and female patients with an epileptic encephalopathy.


Assuntos
Epilepsia/genética , Epilepsia/fisiopatologia , Fatores de Troca do Nucleotídeo Guanina/genética , Mutação/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Estudos de Coortes , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Feminino , Estudos de Associação Genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Adulto Jovem
15.
Epilepsia ; 56(6): 841-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25864721

RESUMO

OBJECTIVE: Recently, de novo mutations in GRIN1 have been identified in patients with nonsyndromic intellectual disability and epileptic encephalopathy. Whole exome sequencing (WES) analysis of patients with genetically unsolved epileptic encephalopathies identified four patients with GRIN1 mutations, allowing us to investigate the phenotypic spectrum of GRIN1 mutations. METHODS: Eighty-eight patients with unclassified early onset epileptic encephalopathies (EOEEs) with an age of onset <1 year were analyzed by WES. The effect of mutations on N-methyl-D-aspartate (NMDA) receptors was examined by mapping altered amino acids onto three-dimensional models. RESULTS: We identified four de novo missense GRIN1 mutations in 4 of 88 patients with unclassified EOEEs. In these four patients, initial symptoms appeared within 3 months of birth, including hyperkinetic movements in two patients (2/4, 50%), and seizures in two patients (2/4, 50%). Involuntary movements, severe developmental delay, and intellectual disability were recognized in all four patients. In addition, abnormal eye movements resembling oculogyric crises and stereotypic hand movements were observed in two and three patients, respectively. All the four patients exhibited only nonspecific focal and diffuse epileptiform abnormality, and never showed suppression-burst or hypsarrhythmia during infancy. A de novo mosaic mutation (c.1923G>A) with a mutant allele frequency of 16% (in DNA of blood leukocytes) was detected in one patient. Three mutations were located in the transmembrane domain (3/4, 75%), and one in the extracellular loop near transmembrane helix 1. All the mutations were predicted to impair the function of the NMDA receptor. SIGNIFICANCE: Clinical features of de novo GRIN1 mutations include infantile involuntary movements, seizures, and hand stereotypies, suggesting that GRIN1 mutations cause encephalopathy resulting in seizures and movement disorders.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Predisposição Genética para Doença/genética , Hipercinese/genética , Mutação de Sentido Incorreto/genética , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética , Transtorno de Movimento Estereotipado/genética , Adolescente , Encefalopatias/complicações , Criança , Pré-Escolar , Análise Mutacional de DNA , Eletroencefalografia , Epilepsia/complicações , Feminino , Humanos , Hipercinese/complicações , Imageamento por Ressonância Magnética , Masculino , Transtorno de Movimento Estereotipado/complicações
16.
Neurogenetics ; 15(2): 107-13, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24526230

RESUMO

Mutations in the TUBB4A gene have been identified so far in two neurodegenerative disorders with extremely different clinical features and course: whispering dysphonia, also known as dystonia type 4 (DYT4), and hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC). We describe a patient with slowly progressive spastic paraparesis, segmental dystonia, intellectual disability, behavioral problems, and evidence of permanent, incomplete myelination associated with progressive cerebellar atrophy. Whole exome sequencing revealed a novel E410K de novo heterozygous mutation in the TUBB4A gene. The clinical and radiological picture of our patient is different from the classic phenotype; thus, it expands the phenotypic variation of TUBB4A-gene-related disorders.


Assuntos
Leucoencefalopatias/genética , Mutação , Doenças Neurodegenerativas/genética , Fenótipo , Tubulina (Proteína)/genética , Criança , Heterozigoto , Humanos , Leucoencefalopatias/complicações , Masculino , Doenças Neurodegenerativas/complicações
17.
Heliyon ; 10(15): e35108, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170428

RESUMO

Introduction: Pediatric video-EEG monitoring is a standard procedure in epilepsy clinics, typically conducted in in-hospital settings.However, hospitalizationis sometimesunnecessary and imposes a burden on children and their families. In response to the rise of telehealth, home video-EEG monitoring has emerged, utilizing portable EEG equipment and video-cameras. Objective: The aim of this study was to assess the feasibility of home video-EEGin a pediatric population. Methods: We conducteda prospective pilot study of twentyhome video-EEG tests in children. We evaluated the quality of EEG and video recordings using a 5-point scale.Demographic, clinical and quality data were comparedto a similar group undergoing in-hospital video-EEG monitoring. Results: Twenty children aged 2.1-17.2 years (mean 9.57 ± 1.01), 12 females (60 %), underwent home video-EEG. A higher proportion of children with intellectual disability/autism were observed in the home-EEG group compared to the in-hospital group: 12 patients (60 %) vs. 5 (25 %) (p < 0.05*, Fisher exact test). In the ambulatory group patients with developmental and epileptic encephalopathy were overrepresented (7 i.e., 35 % vs. 0), while those withself-limited childhood epilepsy were more prevalent in the in-hospital group (5 i.e., 25 % vs 0) (p < 0.05*, Chi square). In the ambulatory group the reasons for referral were seizure localization/classification in 11 patients (55 %), paroxysmal event classification in 5 (25 %) and quantification of sleep epileptic activity in 4(20 %),similar to the in-hospital group (40 %, 40 % and 20 % respectively, p > 0.05, Chi square). The quality of the EEG recording was higher compared to in-hospital tests: median 5 [IQR 3.25-5] vs 4[IQR 3-4] (p < 0.05*, Mann-Whitney U test), while the quality of video recording was lower compared to in-hospital recordings: median 3[IQR 2.25-4] vs 5[IQR4-5] (p < 0.01**, Mann-Whitney U test). Conclusions: Home video-EEG monitoring is apromising option forlong-termpediatric EEG monitoring, particularlyfor children with special needs.

19.
Neurogenetics ; 13(1): 73-6, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22290197

RESUMO

We recently identified a new locus for spastic paraplegia type 47 (SPG47) in a consanguineous Arabic family with two affected siblings with progressive spastic paraparesis,intellectual disability, seizures, periventricular white matter changes and thin corpus callosum. Using exome sequencing, we now identified a novel AP4B1 frameshift mutation (c.664delC) in this family. This mutation was homozygous in both affected siblings and heterozygous in both parents. The mutant allele was absent in 316 Caucasian and 200 ethnically matched control chromosomes. We propose that AP4B1 mutations cause SPG47 and should be considered in early onset spastic paraplegia with intellectual disability.


Assuntos
Complexo 4 de Proteínas Adaptadoras/genética , Mutação da Fase de Leitura , Paraplegia Espástica Hereditária/genética , Complexo 4 de Proteínas Adaptadoras/metabolismo , Sequência de Bases , Consanguinidade , Análise Mutacional de DNA , Etnicidade/genética , Éxons , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Paraplegia Espástica Hereditária/patologia , Paraplegia Espástica Hereditária/fisiopatologia
20.
Epileptic Disord ; 23(5): 695-705, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34519644

RESUMO

Mutations in the KCNQ2 gene, encoding the voltage-gated potassium channel, Kv7.2, cause neonatal epilepsies. The potassium channel opener, retigabine, may improve epilepsy control in cases with loss-of-function mutations, but exacerbate seizures in cases with gain-of-function mutations. Our aim was to describe a patient with a KCNQ2 mutation within the K+-selectivity filter and illustrate how electrophysiological analysis helped us to implement personalized treatment. Medical history of a patient with severe neonatal epileptic encephalopathy was recorded. Diagnosis was reached by whole-exome-sequencing. The pathogenic variant was expressed in Chinese hamster ovary cells, and patch-clamp studies were performed, directing therapy. A seven-year-old male presented with neonatal seizures, progressing to hundreds of seizures/day without developmental milestones. Whole-exome sequencing revealed a pathogenic variant, p.Gly281Arg, in the KCNQ2 gene, located within the ion selectivity filter of the pore, predicted to cause loss-of-function of Kv7.2, not affected by retigabine. Patch-clamp analysis revealed no current with the mutant homomer and reduced current with heterotetramer (KCNQ2WT/KCNQ2G281R/KCNQ3WT) channels, consistent with a dominant-negative effect. Addition of 5 µM retigabine did not produce a current with the mutant homomer, but increased current with the heterotetramer (V50: -30.4 mV vs. -51.3 mV). Following these results, retigabine at 15 mg/kg was administered off-label, prompting a 90% seizure reduction. Drug withdrawal, imposed by revocation of marketing authorisation for retigabine, caused 50% increase in seizure burden. Retigabine may be used for precision therapy in patients with KCNQ2-related epilepsy due to loss-of-function variants. It is imperative to reintroduce safe marketing of retigabine for selected patients as personalized treatment.


Assuntos
Epilepsia , Animais , Encefalopatias , Células CHO , Carbamatos , Criança , Cricetinae , Cricetulus , Humanos , Canal de Potássio KCNQ2/genética , Masculino , Fenilenodiaminas , Medicina de Precisão , Convulsões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA