Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1012191, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683845

RESUMO

An imbalance between suppressor and effector immune responses may preclude cure in chronic parasitic diseases. In the case of Trypanosoma cruzi infection, specialized regulatory Foxp3+ T (Treg) cells suppress protective type-1 effector responses. Herein, we investigated the kinetics and underlying mechanisms behind the regulation of protective parasite-specific CD8+ T cell immunity during acute T. cruzi infection. Using the DEREG mouse model, we found that Treg cells play a role during the initial stages after T. cruzi infection, restraining the magnitude of CD8+ T cell responses and parasite control. Early Treg cell depletion increased the frequencies of polyfunctional short-lived, effector T cell subsets, without affecting memory precursor cell formation or the expression of activation, exhaustion and functional markers. In addition, Treg cell depletion during early infection minimally affected the antigen-presenting cell response but it boosted CD4+ T cell responses before the development of anti-parasite effector CD8+ T cell immunity. Crucially, the absence of CD39 expression on Treg cells significantly bolstered effector parasite-specific CD8+ T cell responses, preventing increased parasite replication in T. cruzi infected mice adoptively transferred with Treg cells. Our work underscores the crucial role of Treg cells in regulating protective anti-parasite immunity and provides evidence that CD39 expression by Treg cells represents a key immunomodulatory mechanism in this infection model.


Assuntos
Antígenos CD , Apirase , Linfócitos T CD8-Positivos , Doença de Chagas , Linfócitos T Reguladores , Trypanosoma cruzi , Animais , Doença de Chagas/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T CD8-Positivos/imunologia , Camundongos , Trypanosoma cruzi/imunologia , Antígenos CD/imunologia , Antígenos CD/metabolismo , Apirase/imunologia , Apirase/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
bioRxiv ; 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37745571

RESUMO

An imbalance between suppressor and effector immune responses may preclude cure in chronic parasitic diseases. In the case of Trypanosoma cruzi infection, specialized regulatory Foxp3+ T (Treg) cells suppress protective type-1 effector responses. Herein, we investigated the kinetics and underlying mechanisms behind the regulation of protective parasite-specific CD8+ T cell immunity during acute T. cruzi infection. Using the DEREG mouse model, we found that Treg cells play a critical role during the initial stages after T. cruzi infection, subsequently influencing CD8+ T cells. Early Treg cell depletion increased the frequencies of polyfunctional short-lived, effector T cell subsets, without affecting memory precursor cell formation or the expression of activation markers. In addition, Treg cell depletion during early infection minimally affected the antigen-presenting cell response but it boosted CD4+ T cell responses before the development of anti-parasite effector CD8+ T cell responses. Crucially, the absence of CD39 expression on Treg cells significantly bolstered effector parasite-specific CD8+ T cell responses, leading to improved parasite control during T. cruzi infection. Our work underscores the crucial role of Treg cells in regulating protective anti-parasite immunity and provides evidence that CD39 expression by Treg cells represents a key immunomodulatory mechanism in this infection model.

3.
Oncoimmunology ; 12(1): 2261326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808403

RESUMO

IL-17 immune responses in cancer are controversial, with both tumor-promoting and tumor-repressing effects observed. To clarify the role of IL-17 signaling in cancer progression, we used syngeneic tumor models from different tissue origins. We found that deficiencies in host IL-17RA or IL-17A/F expression had varying effects on the in vivo growth of different solid tumors including melanoma, sarcoma, lymphoma, and leukemia. In each tumor type, the absence of IL-17 led to changes in the expression of mediators associated with inflammation and metastasis in the tumor microenvironment. Furthermore, IL-17 signaling deficiencies in the hosts resulted in decreased anti-tumor CD8+ T cell immunity and caused tumor-specific changes in several lymphoid cell populations. Our findings were associated with distinct patterns of IL-17A/F cytokine and receptor subunit expression in the injected tumor cell lines. These patterns affected tumor cell responsiveness to IL-17 and downstream intracellular signaling, leading to divergent effects on cancer progression. Additionally, we identified IL-17RC as a critical determinant of the IL-17-mediated response in tumor cells and a potential biomarker for IL-17 signaling effects in tumor progression. Our study offers insight into the molecular mechanisms underlying IL-17 activities in cancer and lays the groundwork for developing personalized immunotherapies.


Assuntos
Neoplasias , Receptores de Interleucina-17 , Humanos , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Interleucina-17 , Transdução de Sinais , Linfócitos T CD8-Positivos , Inflamação , Neoplasias/genética
4.
Front Immunol ; 9: 2555, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30455700

RESUMO

While it is now acknowledged that CD4+ T cells expressing CD25 and Foxp3 (Treg cells) regulate immune responses and, consequently, influence the pathogenesis of infectious diseases, the regulatory response mediated by Treg cells upon infection by Trypanosoma cruzi was still poorly characterized. In order to understand the role of Treg cells during infection by this protozoan parasite, we determined in time and space the magnitude of the regulatory response and the phenotypic, functional and transcriptional features of the Treg cell population in infected mice. Contrary to the accumulation of Treg cells reported in most chronic infections in mice and humans, experimental T. cruzi infection was characterized by sustained numbers but decreased relative frequency of Treg cells. The reduction in Treg cell frequency resulted from a massive accumulation of effector immune cells, and inversely correlated with the magnitude of the effector immune response as well as with emergence of acute immunopathology. In order to understand the causes underlying the marked reduction in Treg cell frequency, we evaluated the dynamics of the Treg cell population and found a low proliferation rate and limited accrual of peripheral Treg cells during infection. We also observed that Treg cells became activated and acquired a phenotypic and transcriptional profile consistent with suppression of type 1 inflammatory responses. To assess the biological relevance of the relative reduction in Treg cells frequency observed during T. cruzi infection, we transferred in vitro differentiated Treg cells at early moments, when the deregulation of the ratio between regulatory and conventional T cells becomes significant. Intravenous injection of Treg cells dampened parasite-specific CD8+ T cell immunity and affected parasite control in blood and tissues. Altogether, our results show that limited Treg cell response during the acute phase of T. cruzi infection enables the emergence of protective anti-parasite CD8+ T cell immunity and critically influences host resistance.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/imunologia , Linfócitos T Reguladores/imunologia , Trypanosoma cruzi/imunologia , Transferência Adotiva , Animais , Proliferação de Células , Ativação Linfocitária/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA