Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(10): 3817-3829, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33606524

RESUMO

The most probable single-molecule conductance of each member of a series of 12 conjugated molecular wires, 6 of which contain either a ruthenium or platinum center centrally placed within the backbone, has been determined. The measurement of a small, positive Seebeck coefficient has established that transmission through these molecules takes place by tunneling through the tail of the HOMO resonance near the middle of the HOMO-LUMO gap in each case. Despite the general similarities in the molecular lengths and frontier-orbital compositions, experimental and computationally determined trends in molecular conductance values across this series cannot be satisfactorily explained in terms of commonly discussed "single-parameter" models of junction conductance. Rather, the trends in molecular conductance are better rationalized from consideration of the complete molecular junction, with conductance values well described by transport calculations carried out at the DFT level of theory, on the basis of the Landauer-Büttiker model.

2.
Chemistry ; 23(9): 2133-2143, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27897344

RESUMO

The compounds and complexes 1,4-C6 H4 (C≡C-cyclo-3-C4 H3 S)2 (2), trans-[Pt(C≡C-cyclo-3-C4 H3 S)2 (PEt3 )2 ] (3), trans-[Ru(C≡C-cyclo-3-C4 H3 S)2 (dppe)2 ] (4; dppe=1,2-bis(diphenylphosphino)ethane) and trans-[Ru(C≡C-cyclo-3-C4 H3 S)2 {P(OEt)3 }4 ] (5) featuring the 3-thienyl moiety as a surface contacting group for gold electrodes have been prepared, crystallographically characterised in the case of 3-5 and studied in metal|molecule|metal junctions by using both scanning tunnelling microscope break-junction (STM-BJ) and STM-I(s) methods (measuring the tunnelling current (I) as a function of distance (s)). The compounds exhibit similar conductance profiles, with a low conductance feature being more readily identified by STM-I(s) methods, and a higher feature by the STM-BJ method. The lower conductance feature was further characterised by analysis using an unsupervised, automated multi-parameter vector classification (MPVC) of the conductance traces. The combination of similarly structured HOMOs and non-resonant tunnelling mechanism accounts for the remarkably similar conductance values across the chemically distinct members of the family 2-5.

3.
Nanoscale ; 10(29): 14128-14138, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29999063

RESUMO

Nascent molecular electronic devices based on linear 'all-carbon' wires attached to gold electrodes through robust and reliable C-Au contacts are prepared via efficient in situ sequential cleavage of trimethylsilyl end groups from an oligoyne, Me3Si-(C[triple bond, length as m-dash]C)4-SiMe3 (1). In the first stage of the fabrication process, removal of one trimethylsilyl (TMS) group in the presence of a gold substrate, which ultimately serves as the bottom electrode, using a stoichiometric fluoride-driven process gives a highly-ordered monolayer, Au|C[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CSiMe3 (Au|C8SiMe3). In the second stage, treatment of Au|C8SiMe3 with excess fluoride results in removal of the remaining TMS protecting group to give a modified monolayer Au|C[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CH (Au|C8H). The reactive terminal C[triple bond, length as m-dash]C-H moiety in Au|C8H can be modified by 'click' reactions with (azidomethyl)ferrocene (N3CH2Fc) to introduce a redox probe, to give Au|C6C2N3HCH2Fc. Alternatively, incubation of the modified gold substrate supported monolayer Au|C8H in a solution of gold nanoparticles (GNPs), results in covalent attachment of GNPs on top of the film via a second alkynyl carbon-Au σ-bond, to give structures Au|C8|GNP in which the monolayer of linear, 'all-carbon' C8 chains is sandwiched between two macroscopic gold contacts. The covalent carbon-surface bond as well as the covalent attachment of the metal particles to the monolayer by cleavage of the alkyne C-H bond is confirmed by surface-enhanced Raman scattering (SERS). The integrity of the carbon chain in both Au|C6C2N3HCH2Fc systems and after formation of the gold top-contact electrode in Au|C8|GNP is demonstrated through electrochemical methods. The electrical properties of these nascent metal-monolayer-metal devices Au|C8|GNP featuring 'all-carbon' molecular wires were characterised by sigmoidal I-V curves, indicative of well-behaved junctions free of short circuits.

4.
Nanoscale ; 9(28): 9902-9912, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28678257

RESUMO

Metal complexes are receiving increased attention as molecular wires in fundamental studies of the transport properties of metal|molecule|metal junctions. In this context we report the single-molecule conductance of a systematic series of d8 square-planar platinum(ii) trans-bis(alkynyl) complexes with terminal trimethylsilylethynyl (C[triple bond, length as m-dash]CSiMe3) contacting groups, e.g. trans-Pt{C[triple bond, length as m-dash]CC6H4C[triple bond, length as m-dash]CSiMe3}2(PR3)2 (R = Ph or Et), using a combination of scanning tunneling microscopy (STM) experiments in solution and theoretical calculations using density functional theory and non-equilibrium Green's function formalism. The measured conductance values of the complexes (ca. 3-5 × 10-5G0) are commensurate with similarly structured all-organic oligo(phenylene ethynylene) and oligo(yne) compounds. Based on conductance and break-off distance data, we demonstrate that a PPh3 supporting ligand in the platinum complexes can provide an alternative contact point for the STM tip in the molecular junctions, orthogonal to the terminal C[triple bond, length as m-dash]CSiMe3 group. The attachment of hexyloxy side chains to the diethynylbenzene ligands, e.g. trans-Pt{C[triple bond, length as m-dash]CC6H2(Ohex)2C[triple bond, length as m-dash]CSiMe3}2(PPh3)2 (Ohex = OC6H13), hinders contact of the STM tip to the PPh3 groups and effectively insulates the molecule, allowing the conductance through the full length of the backbone to be reliably measured. The use of trialkylphosphine (PEt3), rather than triarylphosphine (PPh3), ancillary ligands at platinum also eliminates these orthogonal contacts. These results have significant implications for the future design of organometallic complexes for studies in molecular junctions.

5.
Dalton Trans ; 42(12): 4240-3, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23396403

RESUMO

Convenient preparative routes to mononuclear ruthenium complexes containing the 2,4-pentadiynylnitrile, or cyanobutadiynyl, ligand are described. The electronic properties of the [C(5)N](-) ligand are closely related to those of not only the cyanide ([CN](-)) and 2-propynylnitrile or cyanoacetylide ([C≡CC≡N](-)) ligands, but also those of the isoelectronic polyynyl ([{C≡C}(n)R](-)) ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA