RESUMO
Our simple and uniquely cost-effective solvent-deficient synthetic method produces 3-5 nm Al2O3 nanoparticles which show promise as improved industrial catalyst-supports. While catalytic applications are sensitive to the details of the atomic structure, a diffraction analysis of alumina nanoparticles is challenging because of extreme size/microstrain-related peak broadening and the similarity of the diffraction patterns of various transitional Al2O3 phases. Here, we employ a combination of X-ray pair-distribution function (PDF) and Rietveld methods, together with solid-state NMR and thermogravimetry/differential thermal analysis-mass spectrometry (TG/DTA-MS), to characterize the alumina phase-progression in our nanoparticles as a function of calcination temperature between 300 and 1200 °C. In the solvent-deficient synthetic environment, a boehmite precursor phase forms which transitions to γ-Al2O3 at an extraordinarily low temperature (below 300 °C), but this γ-Al2O3 is initially riddled with boehmite-like stacking-fault defects that steadily disappear during calcination in the range from 300 to 950 °C. The healing of these defects accounts for many of the most interesting and widely reported properties of the γ-phase.
RESUMO
A low-cost mass spectrometer attachment for thermogravimetric analysis has been constructed from readily available commercial instruments and components. The benefits of this set-up include excellent mass-flow repeatability, simple design, and significantly lower adoption cost as opposed to ready-built commercial solutions. The inclusion of an open source software package allows semi-automated, highly simplified data analysis. The results from the instrument show excellent sensitivity for small volumes of evolved gas, as well as highly reproducible signal strengths. The GUI-based software package provides data analysis in a way that is very intuitive and that can be easily modified to work with a broad range of TG instruments.
RESUMO
Naturally occurring ferrihydrite is both impure and difficult to isolate, so the numerous applications and interesting properties of ferrihydrite have spurred the development of various synthetic techniques. Nearly all techniques are based on the hydrolysis of an iron salt and require careful control of temperature, pH, and concentration. In this Article, we report a new synthetic method which does not require such control and is perhaps the fastest and simplest route to synthesizing ferrhydrite. XRD, TEM, BET, and chemical purity characterizations show that the chemically pure, 2-line ferrihydrite product consists of crystallites 2-6 nm in diameter which aggregate to form mesoporous, high surface area agglomerates that are attractive candidates for the many adsorption applications of ferrihydrite. X-ray PDF data were also collected for the ferrihydrite product and refined against the hexagonal structural model recently proposed by Michel et al. These analyses suggest that ferrihydrite has a consistent, repeatable structure independent of variation in the synthetic method, water content of the sample, or particle size of the crystallites, and this structure can be adequately described by the proposed hexagonal model.
RESUMO
The vibrational density of states (VDOS) for water confined on the surface of rutile-TiO(2) nanoparticles has been extracted from low temperature inelastic neutron scattering spectra. Two rutile-TiO(2) nanoparticle samples that differ in their respective levels of hydration, namely TiO(2) x 0.37 H(2)O (1) and TiO(2) x 0.22 H(2)O (2) have been studied. The temperature dependency of the heat capacities for the two samples has been quantified from the VDOS. The results from this study are compared with previously reported data for water confined on anatase-TiO(2) nanoparticles.
Assuntos
Nanopartículas/química , Nêutrons , Espalhamento de Radiação , Titânio/química , Água/química , Temperatura , Termodinâmica , VibraçãoRESUMO
We report an efficient, general methodology for producing high-surface area metal oxide nanomaterials for a vast range of metal oxides, including at least one metal oxide nanomaterial from nearly every transition metal and semi-metal group in the periodic table (groups 3-4 and 6-15) as well as several from the lanthanide group (see ). The method requires only 2-3 simple steps; a hydrated metal salt (usually a nitrate or chloride salt) is ground with bicarbonate (usually NH4HCO3) for 10-30 minutes to form a precursor that is then either untreated or rinsed before being calcined at relatively low temperatures (220-550 °C) for 1-3 hours. The method is thus similar to surfactant-free aqueous methods such as co-precipitation but is unique in that no solvents are added. The resulting "solvent-deficient" environment has interesting and unique consequences, including increased crystallinity of the products over other aqueous methods and a mesoporous nature in the inevitable agglomerates. The products are chemically pure and phase pure with crystallites generally 3-30 nm in average size that aggregate into high surface area, mesoporous agglomerates 50-300 nm in size that would be useful for catalyst and gas sensing applications. The versatility of products and efficiency of the method lend its unique potential for improving the industrial viability of a broad family of useful metal oxide nanomaterials. In this paper, we outline the methodology of the solvent-deficient method using our understanding of its mechanism, and we describe the range and quality of nanomaterials it has produced thus far.
RESUMO
The buffer used during horse spleen ferritin iron loading significantly influences the mineralization process and the quantity of iron deposited in ferritin. Ferritin iron loading in imidazole shows a rapid hyperbolic curve in contrast to iron loading in 3-(N-morpholino)propanesulfonic acid (MOPS), which displays a slower sigmoidal curve. Ferritin iron loading in an equimolar mixture of imidazole and MOPS produces an iron-loading curve that is intermediate between the imidazole and MOPS curves indicating that one buffer does not dominate the reaction mechanism. The UV-visible spectrum of the ferritin mineral has a higher absorbance from 250 to 450 nm when prepared in imidazole buffer than in MOPS buffer. These results suggest that different mineral phases form in ferritin by different loading mechanisms in imidazole and MOPS buffered reactions. Samples of 1500 Fe/ferritin were prepared in MOPS or imidazole buffer and were analyzed for crystallinity and using the electron diffraction capabilities of the electron microscope. The sample prepared in imidazole was significantly more crystalline than the sample prepared in MOPS. X-ray powder diffraction studies showed that small cores (~500 Fe/ferritin) prepared in MOPS or imidazole possess a 2-line ferrihydrite spectrum. As the core size increases the mineral phase begins to change from 2-line to 6-line ferrihydrite with the imidazole sample favoring the 6-line ferrihydrite phase. Taken together, these results suggest that the iron deposition mechanism in ferritin can be controlled by properties of the buffer with samples prepared in imidazole forming a larger, more ordered crystalline mineral than samples prepared in MOPS.
Assuntos
Apoferritinas/química , Ferritinas/química , Imidazóis/química , Ferro/química , Morfolinas/química , Animais , Soluções Tampão , Cavalos , Cinética , Microscopia Eletrônica de Transmissão , Difração de Pó , Ligação ProteicaRESUMO
Inelastic neutron scattering has been employed to probe the vibrational density of states of water confined by an oxide surface, namely, nanoparticles of the anatase polymorph of TiO2. The heat capacity of confined water has been measured by adiabatic calorimetry and compared with values derived from the vibrational density of states. Both inelastic neutron scattering and calorimetry demonstrate restricted mobility and lower heat capacity and entropy of confined water as compared to the bulk.
RESUMO
Silicon micromachined calorimeters ("calorimeter on a chip") are used to measure heat capacities and phase transition enthalpies for thin film, single crystal, and powder samples (5-500 mug). The technology is thus compatible with the small samples produced in multianvil and large diamond anvil cells. Techniques for handling small samples and attaching them to the calorimetric devices have been developed. Initial data illustrate application to CoO and to Fe(2)SiO(4) olivine and spinel, a quenched high pressure phase metastable at ambient conditions. The calorimetric entropy of the olivine-spinel transition in Fe(2)SiO(4) (-16 +/- 5 J/mol.K) is in good agreement with that calculated from phase equilibrium data (-14 +/- 3 J/mol.K). A magnetic transition in iron silicate spinel, detected previously by Mossbauer spectroscopy, is seen in the calorimetric signal.
Assuntos
Calorimetria/instrumentação , Calorimetria/métodos , Cobalto/química , Compostos de Ferro/química , Minerais/química , Óxidos/química , Oxigênio/química , Pressão , Silício/química , TemperaturaRESUMO
Specific heats (15-350 K) have been measured on 7 nm TiO2 anatase and rutile nanoparticles containing significant amounts of surface-adsorbed water. By successively reducing the water content without changing particle size, we observed two types of water behavior. The specific heat of bare 7 nm particles was estimated using the water specific heats. Contrary to previous literature reports, the bare small particle specific heats are the same as those of the bulk, within experimental error.
Assuntos
Nanoestruturas/química , Titânio/química , Água/química , Adsorção , Difusão , Teste de Materiais , Nanoestruturas/análise , Tamanho da Partícula , Propriedades de Superfície , Temperatura , Condutividade Térmica , Titânio/análiseRESUMO
High purity, spherical anatase nanocrystals were prepared by a modified sol-gel method. Mixing of anhydrous TiCl(4) with ethanol at about 0 degrees C yielded a yellowish sol that was transformed into phase-pure anatase of 7.7 nm in size after baking at 87 degrees C for 3 days. This synthesis route eliminates the presence of fine seeds of the nanoscale brookite phase that frequently occurs in low-temperature formation reactions and also significantly retards the phase transformation to rutile at high temperatures. Heating the as-is 7.7 nm anatase for 2 h at temperatures up to 600 degrees C leads to an increase in grain size of the anatase nanoparticles to 32 nm. By varying the calcination time from 2 to 48 h at 300 degrees C, the particle size could be controlled between 12 and 15.3 nm. The grain growth kinetics of anatase nanoparticles was found to follow the equation, D(2) - D(0)(2) = k(0)t(m)e((-)(E)(a)/(RT)) with a time exponent m = 0.286(+/-9) and an activation energy of E(a) = 32 +/- 2 kJ x mol(-)(1). Thermogravimetric analysis in combination with infrared and X-ray photoemission spectroscopies has shown the anatase nanocrystals at different sizes to be composed of an interior anatase lattice with surfaces that are hydrogen-bonded to a wide set of energetically nonequivalent groups. With a decrease in particle size, the anatase lattice volume contracts, while the surface hydration increases. The removal of the surface hydration layers causes coarsening of the nanoparticles.