Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(4): 1191-1196, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38231178

RESUMO

Optical metrology is ubiquitous, but image-based methods cannot resolve features of dimensions much smaller than the wavelength. However, it has recently been demonstrated that light can be nanofocused into subwavelength semiconducting lines by setting the incident polarization along the direction of these lines. This Letter extends the previous studies to systems with two perpendicular gratings, as found e.g. after replacement gate processing of gate-all-around (GAA) field-effect transistors (FETs). We show that besides the nanofocusing effect, the incident polarization also offers control over which array of lines the light couples into. The interaction of the incident light occurs with the semiconducting lines to which the polarization is parallel with remarkably low interference from the existence of another perpendicular grating. We demonstrate the use of this effect with Raman spectroscopy to simultaneously extract the SiGe volume and the strain in the Si forksheet channels and in the SiGe layers of GAA FETs.

2.
Nanotechnology ; 35(28)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38579688

RESUMO

Spatially resolved x-ray fluorescence (XRF) based analysis employing incident beam sizes in the low micrometer range (µXRF) is widely used to study lateral composition changes of various types of microstructured samples. However, up to now the quantitative analysis of such experimental datasets could only be realized employing adequate calibration or reference specimen. In this work, we extent the applicability of the so-called reference-free XRF approach to enable reference-freeµXRF analysis. Here, no calibration specimen are needed in order to derive a quantitative and position sensitive composition of the sample of interest. The necessary instrumental steps to realize reference-freeµXRF are explained and a validation of ref.-freeµXRF against ref.-free standard XRF is performed employing laterally homogeneous samples. Finally, an application example from semiconductor research is shown, where the lateral sample features require the usage of ref.-freeµXRF for quantitative analysis.

3.
Microsc Microanal ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38447171

RESUMO

Atom probe tomography (APT) is a unique analytical technique that offers three-dimensional elemental mapping with a spatial resolution down to the sub-nanometer. When APT is applied on complex heterogenous systems and/or under certain experimental conditions, that is, laser illumination, the specimen shape can deviate from an ideal hemisphere. Insufficient consideration of this aspect can introduce artifacts in the reconstructed dataset, ultimately degrading its spatial accuracy. So far, there has been limited investigation into the detailed evolution of emitter shape and its impact on the field-of-view (FOV). In this study, we numerically and experimentally investigated the FOV for asymmetric emitters and its evolution throughout the analysis depth. Our analysis revealed that, for asymmetric emitters, the ions evaporated from the topmost region of the specimen (summit) project approximately to the detector center. Furthermore, we demonstrated the implications of this finding on the FOV location for asymmetric emitters. Based on our findings, the location of the center of the FOV can deviate from the specimen central axis with an evolution depending on the evolution of the emitter shape. This study highlights the importance of accounting for the specimen shape when developing advanced data reconstruction schemes to enhance spatial resolution and accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA