Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 32(8): 980-91, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19344336

RESUMO

The study examined the relationships between whole tree hydraulic conductance (K(tree)) and the conductance in roots (K(root)) and leaves (K(leaf)) in loblolly pine trees. In addition, the role of seasonal variations in K(root) and K(leaf) in mediating stomatal control of transpiration and its response to vapour pressure deficit (D) as soil-dried was studied. Compared to trunk and branches, roots and leaves had the highest loss of conductivity and contributed to more than 75% of the total tree hydraulic resistance. Drought altered the partitioning of the resistance between roots and leaves. As soil moisture dropped below 50%, relative extractable water (REW), K(root) declined faster than K(leaf). Although K(tree) depended on soil moisture, its dynamics was tempered by the elongation of current-year needles that significantly increased K(leaf) when REW was below 50%. After accounting for the effect of D on g(s), the seasonal decline in K(tree) caused a 35% decrease in g(s) and in its sensitivity to D, responses that were mainly driven by K(leaf) under high REW and by K(root) under low REW. We conclude that not only water stress but also leaf phenology affects the coordination between K(tree) and g(s) and the acclimation of trees to changing environmental conditions.


Assuntos
Pinus taeda/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Estações do Ano , Solo/análise , Pressão de Vapor , Água/metabolismo
2.
Environ Pollut ; 149(3): 303-14, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17600603

RESUMO

We evaluated foliar and forest floor chemistry across a gradient of N deposition in the Northeast at 11 red spruce (Picea rubens Sarg.) sites in 1987/1988 and foliar and forest floor chemistry and basal area growth at six paired spruce and deciduous sites in 1999. The six red spruce plots were a subset of the original 1987/1988 spruce sites. In 1999, we observed a significant correlation between mean growing season temperature and red spruce basal area growth. Red spruce and deciduous foliar %N correlated significantly with N deposition. Although N deposition has not changed significantly from 1987/1988 to 1999, net nitrification potential decreased significantly at Whiteface. This decrease in net potential nitrification is not consistent with the N saturation hypothesis and suggests that non-N deposition controls, such as climatic factors and immobilization of down dead wood, might have limited N cycling.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Monitoramento Ambiental/métodos , Nitrogênio/efeitos adversos , Folhas de Planta/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Acer/crescimento & desenvolvimento , Região dos Apalaches , New England , Pinus/crescimento & desenvolvimento , Tempo
3.
Environ Pollut ; 149(3): 293-302, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17643595

RESUMO

Recent studies have demonstrated that natural abundance (15)N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, delta(15)N of foliage and soil also increases. We measured foliar delta(15)N at 11 high-elevation spruce-fir stands along an N deposition gradient in 1987-1988 and at seven paired northern hardwood and spruce-fir stands in 1999. In 1999, foliar delta(15)N increased from -5.2 to -0.7 per thousand with increasing N deposition from Maine to NY. Foliar delta(15)N decreased between 1987-1988 and 1999, while foliar %N increased and foliar C:N decreased at most sites. Foliar delta(15)N was strongly correlated with N deposition, and was also positively correlated with net nitrification potential and negatively correlated with soil C:N ratio. Although the increase in foliar %N is consistent with a progression towards N saturation, other results of this study suggest that, in 1999, these stands were further from N saturation than in 1987-1988.


Assuntos
Poluentes Ambientais/análise , Nitrogênio/análise , Folhas de Planta/química , Árvores/crescimento & desenvolvimento , Região dos Apalaches , Clima , Monitoramento Ambiental/métodos , Humanos , New England , Isótopos de Nitrogênio/análise , Picea/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Solo/análise , Tempo
4.
Sci Total Environ ; 605-606: 376-390, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28668749

RESUMO

A field experiment was established in a high elevation red spruce (Picea rubens Sarg.) - balsam fir (Abies balsamea) forest on Mount Ascutney Vermont, USA in 1988 to test the nitrogen (N) saturation hypothesis, and to better understand the mechanisms causing forest decline at the time. The study established replicate control, low and high dose nitrogen addition plots (i.e., 0, 15.7 and 31.4kgNH4Cl-Nha-1yr-1). The treatments began in 1988 and continued annually until 2010, but monitoring has continued to present. During the fertilization period, forest floor C:N, net in situ N mineralization, spruce foliar Ca%, and live spruce basal area decreased with increasing N addition, while foliar spruce N% and forest floor net nitrification increased with increasing N addition. The control plots aggraded forest floor N at a rate equal to the sum of the net in situ N mineralization plus average ambient deposition. Conversely, N addition plots lost forest floor N. Following the termination of N additions in 2010, the measured tree components returned to pre-treatment levels, but forest floor processes were slower to respond. During the 30year study, site surface air temperature has increased by 0.5°C per decade, and total N deposition has decreased 5.5 to 4.0kgNha-1yr-1. There have also been three significant drought years and at least one freeze injury year after which much of the forest mortality on the N addition plots occurred. Given that there was no control for the air temperature increase, discussion of the interactive impacts of climate and change and N addition is only subjective. Predicted changes in climate, N deposition and other stressors suggest that even in the absence of N saturation, regeneration of the spruce-fir ecosystem into the next century seems unlikely despite recent region-wide growth increases.


Assuntos
Abies/crescimento & desenvolvimento , Florestas , Nitrogênio/análise , Picea/crescimento & desenvolvimento , Mudança Climática , Nitrificação , Solo/química , Árvores , Vermont
5.
Environ Pollut ; 158(6): 2053-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20045233

RESUMO

Federal agencies of several nations have or are currently developing guidelines for critical forest soil acid loads. These guidelines are used to establish regulations designed to maintain atmospheric acid inputs below levels shown to damage forests and streams. Traditionally, when the critical soil acid load exceeds the amount of acid that the ecosystem can absorb, it is believed to potentially impair forest health. The excess over the critical soil acid load is termed the exceedance, and the larger the exceedance, the greater the risk of ecosystem damage. This definition of critical soil acid load applies to exposure of the soil to a single, long-term pollutant (i.e., acidic deposition). However, ecosystems can be simultaneously under multiple ecosystem stresses and a single critical soil acid load level may not accurately reflect ecosystem health risk when subjected to multiple, episodic environmental stress. For example, the Appalachian Mountains of western North Carolina receive some of the highest rates of acidic deposition in the eastern United States, but these levels are considered to be below the critical acid load (CAL) that would cause forest damage. However, the area experienced a moderate three-year drought from 1999 to 2002, and in 2001 red spruce (Picea rubens Sarg.) trees in the area began to die in large numbers. The initial survey indicated that the affected trees were killed by the southern pine beetle (Dendroctonus frontalis Zimm.). This insect is not normally successful at colonizing these tree species because the trees produce large amounts of oleoresin that exclude the boring beetles. Subsequent investigations revealed that long-term acid deposition may have altered red spruce forest structure and function. There is some evidence that elevated acid deposition (particularly nitrogen) reduced tree water uptake potential, oleoresin production, and caused the trees to become more susceptible to insect colonization during the drought period. While the ecosystem was not in exceedance of the CAL, long-term nitrogen deposition pre-disposed the forest to other ecological stress. In combination, insects, drought, and nitrogen ultimately combined to cause the observed forest mortality. If any one of these factors were not present, the trees would likely not have died. This paper presents a conceptual framework of the ecosystem consequences of these interactions as well as limited plot level data to support this concept. Future assessments of the use of CAL studies need to account for multiple stress impacts to better understand ecosystem response.


Assuntos
Chuva Ácida/análise , Mudança Climática , Agricultura Florestal/métodos , Poluentes do Solo/análise , Solo/análise , Árvores/crescimento & desenvolvimento , Chuva Ácida/toxicidade , Secas , Ecossistema , Monitoramento Ambiental/métodos , North Carolina , Solo/normas , Poluentes do Solo/toxicidade , Temperatura , Árvores/efeitos dos fármacos , Árvores/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA