Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Plant Cell ; 26(3): 1183-99, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24619613

RESUMO

The chloroplast-encoded low molecular weight protein PsbN is annotated as a photosystem II (PSII) subunit. To elucidate the localization and function of PsbN, encoded on the opposite strand to the psbB gene cluster, we raised antibodies and inserted a resistance cassette into PsbN in both directions. Both homoplastomic tobacco (Nicotiana tabacum) mutants psbN-F and psbN-R show essentially the same PSII deficiencies. The mutants are extremely light sensitive and failed to recover from photoinhibition. Although synthesis of PSII proteins was not altered significantly, both mutants accumulated only ∼25% of PSII proteins compared with the wild type. Assembly of PSII precomplexes occurred at normal rates, but heterodimeric PSII reaction centers (RCs) and higher order PSII assemblies were not formed efficiently in the mutants. The psbN-R mutant was complemented by allotopic expression of the PsbN gene fused to the sequence of a chloroplast transit peptide in the nuclear genome. PsbN represents a bitopic trans-membrane peptide localized in stroma lamellae with its highly conserved C terminus exposed to the stroma. Significant amounts of PsbN were already present in dark-grown seedling. Our data prove that PsbN is not a constituent subunit of PSII but is required for repair from photoinhibition and efficient assembly of the PSII RC.


Assuntos
Nicotiana/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Luz , Mutação , Óperon , Nicotiana/genética , Transcrição Gênica
2.
New Phytol ; 208(4): 1126-37, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26192339

RESUMO

The question of whether red light-induced stomatal opening is mediated by a photosynthesis-derived reduction in intercellular [CO2 ] (Ci ) remains controversial and genetic analyses are needed. The Arabidopsis thaliana protein kinase HIGH TEMPERATURE 1 (HT1) is a negative regulator of [CO2 ]-induced stomatal closing and ht1-2 mutant plants do not show stomatal opening to low [CO2 ]. The protein kinase mutant ost1-3 exhibits slowed stomatal responses to CO2 . The functions of HT1 and OPEN STOMATA 1 (OST1) to changes in red, blue light or [CO2 ] were analyzed. For comparison we assayed recessive ca1ca4 carbonic anhydrase double mutant plants, based on their slowed stomatal response to CO2 . Here, we report a strong impairment in ht1 in red light-induced stomatal opening whereas blue light was able to induce stomatal opening. The effects on photosynthetic performance in ht1 were restored when stomatal limitation of CO2 uptake, by control of [Ci ], was eliminated. HT1 was found to interact genetically with OST1 both during red light- and low [CO2 ]-induced stomatal opening. Analyses of ca1ca4 plants suggest that more than a low [Ci ]-dependent pathway may function in red light-induced stomatal opening. These results demonstrate that HT1 is essential for red light-induced stomatal opening and interacts genetically with OST1 during stomatal responses to red light and altered [CO2 ].


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Dióxido de Carbono/metabolismo , Genes de Plantas , Luz , Fotossíntese/genética , Estômatos de Plantas , Proteínas Quinases/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Mutação , Proteínas Quinases/metabolismo , Transdução de Sinais
3.
Cell Rep ; 43(6): 114284, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38814785

RESUMO

Nuclear envelope (NE) ruptures are emerging observations in Lamin-related dilated cardiomyopathy, an adult-onset disease caused by loss-of-function mutations in Lamin A/C, a nuclear lamina component. Here, we test a prevailing hypothesis that NE ruptures trigger the pathological cGAS-STING cytosolic DNA-sensing pathway using a mouse model of Lamin cardiomyopathy. The reduction of Lamin A/C in cardio-myocyte of adult mice causes pervasive NE ruptures in cardiomyocytes, preceding inflammatory transcription, fibrosis, and fatal dilated cardiomyopathy. NE ruptures are followed by DNA damage accumulation without causing immediate cardiomyocyte death. However, cGAS-STING-dependent inflammatory signaling remains inactive. Deleting cGas or Sting does not rescue cardiomyopathy in the mouse model. The lack of cGAS-STING activation is likely due to the near absence of cGAS expression in adult cardiomyocytes at baseline. Instead, extracellular matrix (ECM) signaling is activated and predicted to initiate pro-inflammatory communication from Lamin-reduced cardiomyocytes to fibroblasts. Our work nominates ECM signaling, not cGAS-STING, as a potential inflammatory contributor in Lamin cardiomyopathy.


Assuntos
Matriz Extracelular , Proteínas de Membrana , Miócitos Cardíacos , Membrana Nuclear , Nucleotidiltransferases , Transdução de Sinais , Animais , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Membrana Nuclear/metabolismo , Matriz Extracelular/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/genética , Dano ao DNA
4.
bioRxiv ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37693381

RESUMO

Mutations in the nuclear Lamin A/C gene (LMNA) cause diverse degenerative disorders, including malignant dilated cardiomyopathy in adults. A prevailing hypothesis postulates that LMNA mutations cause nuclear envelope ruptures that trigger pathogenic inflammatory signaling via the cGAS-STING cytosolic DNA-sensing pathway. Here, we provide evidence against this hypothesis, using a mouse model of LMNA-related cardiomyopathy that mimics Lamin A/C protein reduction observed in patient cardiomyocytes. We observed that pervasive nuclear envelope ruptures preceded the onset of cardiac transcriptional modulation and dilated cardiomyopathy. Nuclear ruptures activated DNA damage response without causing immediate cardiomyocyte death. However, cGAS-STING downstream cytokine genes remained inactive in the mutant cardiomyocytes. Deleting cGas or Sting did not alleviate cardiomyopathy. Instead, extracellular matrix signaling was predicted to emanate from Lamin A/C-reduced cardiomyocytes to communicate with fibroblasts in the heart. These findings suggest that cGAS-STING is not a major pathogenetic contributor to LMNA-related dilated cardiomyopathy in adult humans.

5.
Cardiovasc Res ; 118(7): 1785-1804, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34132780

RESUMO

AIMS: Fibrosis is associated with all forms of adult cardiac diseases including myocardial infarction (MI). In response to MI, the heart undergoes ventricular remodelling that leads to fibrotic scar due to excessive deposition of extracellular matrix mostly produced by myofibroblasts. The structural and mechanical properties of the fibrotic scar are critical determinants of heart function. Yes-associated protein (Yap) and transcriptional coactivator with PDZ-binding motif (Taz) are the key effectors of the Hippo signalling pathway and are crucial for cardiomyocyte proliferation during cardiac development and regeneration. However, their role in cardiac fibroblasts, regulating post-MI fibrotic and fibroinflammatory response, is not well established. METHODS AND RESULTS: Using mouse model, we demonstrate that Yap/Taz are activated in cardiac fibroblasts after MI and fibroblasts-specific deletion of Yap/Taz using Col1a2Cre(ER)T mice reduces post-MI fibrotic and fibroinflammatory response and improves cardiac function. Consistently, Yap overexpression elevated post-MI fibrotic response. Gene expression profiling shows significant downregulation of several cytokines involved in post-MI cardiac remodelling. Furthermore, Yap/Taz directly regulate the promoter activity of pro-fibrotic cytokine interleukin-33 (IL33) in cardiac fibroblasts. Blocking of IL33 receptor ST2 using the neutralizing antibody abrogates the Yap-induced pro-fibrotic response in cardiac fibroblasts. We demonstrate that the altered fibroinflammatory programme not only affects the nature of cardiac fibroblasts but also the polarization as well as infiltration of macrophages in the infarcted hearts. Furthermore, we demonstrate that Yap/Taz act downstream of both Wnt and TGFß signalling pathways in regulating cardiac fibroblasts activation and fibroinflammatory response. CONCLUSION: We demonstrate that Yap/Taz play an important role in controlling MI-induced cardiac fibrosis by modulating fibroblasts proliferation, transdifferentiation into myofibroblasts, and fibroinflammatory programme.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Interleucina-33 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Cicatriz/metabolismo , Fibroblastos/metabolismo , Fibrose , Coração , Interleucina-33/metabolismo , Camundongos , Transativadores/genética , Transativadores/metabolismo , Proteínas de Sinalização YAP
6.
Nat Commun ; 13(1): 2796, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589753

RESUMO

One common cause of vision loss after retinal detachment surgery is the formation of proliferative and contractile fibrocellular membranes. This aberrant wound healing process is mediated by epithelial-mesenchymal transition (EMT) and hyper-proliferation of retinal pigment epithelial (RPE) cells. Current treatment relies primarily on surgical removal of these membranes. Here, we demonstrate that a bio-functional polymer by itself is able to prevent retinal scarring in an experimental rabbit model of proliferative vitreoretinopathy. This is mediated primarily via clathrin-dependent internalisation of polymeric micelles, downstream suppression of canonical EMT transcription factors, reduction of RPE cell hyper-proliferation and migration. Nuclear factor erythroid 2-related factor 2 signalling pathway was identified in a genome-wide transcriptomic profiling as a key sensor and effector. This study highlights the potential of using synthetic bio-functional polymer to modulate RPE cellular behaviour and offers a potential therapy for retinal scarring prevention.


Assuntos
Fator 2 Relacionado a NF-E2 , Epitélio Pigmentado da Retina , Animais , Linhagem Celular , Movimento Celular , Cicatriz/metabolismo , Transição Epitelial-Mesenquimal , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Polímeros/metabolismo , Coelhos , Epitélio Pigmentado da Retina/metabolismo
7.
Diabetes ; 70(9): 2131-2146, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34155039

RESUMO

Patients with diabetes have an increased risk of heart failure (HF). Diabetes is highly prevalent in HF with preserved ejection fraction (HFpEF), which is on the rise worldwide. The role of diabetes in HF is less established, and available treatments for HF are not effective in patients with HFpEF. Tissue factor (TF), a transmembrane receptor, plays an important role in immune cell inflammation and atherothrombosis in diabetes. However, its role in diabetes-induced cardiac inflammation, hypertrophy, and HF has not been studied. In this study, we used wild-type (WT), heterozygous, and low-TF (with 1% human TF) mice to determine the role of TF in type 1 diabetes-induced HF. We found significant upregulation of cardiac TF mRNA and protein levels in diabetic WT hearts compared with nondiabetic controls. WT diabetic hearts also exhibited increased inflammation and cardiac hypertrophy versus controls. However, these changes in cardiac inflammation and hypertrophy were not found in low-TF mice with diabetes compared with their nondiabetic controls. TF deficiency was also associated with improved cardiac function parameters suggestive of HFpEF, which was evident in WT mice with diabetes. The TF regulation of inflammation and cardiac remodeling was further dependent on downstream ERK1/2 and STAT3 pathways. In summary, our study demonstrated an important role of TF in regulating diabetes-induced inflammation, hypertrophy, and remodeling of the heart leading to HFpEF.


Assuntos
Cardiomegalia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Insuficiência Cardíaca/metabolismo , Inflamação/metabolismo , Miocárdio/metabolismo , Tromboplastina/metabolismo , Animais , Masculino , Camundongos , Tromboplastina/genética
8.
Sci Rep ; 8(1): 3937, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500447

RESUMO

Tissue development, regeneration, or de-novo tissue engineering in-vitro, are based on reciprocal cell-niche interactions. Early tissue formation mechanisms, however, remain largely unknown given complex in-vivo multifactoriality, and limited tools to effectively characterize and correlate specific micro-scaled bio-mechanical interplay. We developed a unique model system, based on decellularized porcine cardiac extracellular matrices (pcECMs)-as representative natural soft-tissue biomaterial-to study a spectrum of common cell-niche interactions. Model monocultures and 1:1 co-cultures on the pcECM of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) were mechano-biologically characterized using macro- (Instron), and micro- (AFM) mechanical testing, histology, SEM and molecular biology aspects using RT-PCR arrays. The obtained data was analyzed using developed statistics, principal component and gene-set analyses tools. Our results indicated biomechanical cell-type dependency, bi-modal elasticity distributions at the micron cell-ECM interaction level, and corresponding differing gene expression profiles. We further show that hMSCs remodel the ECM, HUVECs enable ECM tissue-specific recognition, and their co-cultures synergistically contribute to tissue integration-mimicking conserved developmental pathways. We also suggest novel quantifiable measures as indicators of tissue assembly and integration. This work may benefit basic and translational research in materials science, developmental biology, tissue engineering, regenerative medicine and cancer biomechanics.


Assuntos
Linhagem da Célula , Fenômenos Biomecânicos , Diferenciação Celular , Técnicas de Cocultura , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Engenharia Tecidual/métodos
9.
Biomater Sci ; 5(6): 1183-1194, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28513656

RESUMO

Various extracellular matrix (ECM) scaffolds, isolated through decellularization, were suggested as ideal biomimetic materials for 'Functional tissue engineering' (FTE). The decellularization process comprises a compromise between damaging and preserving the ultrastructure and composition of ECM-previously shown to affect cell survival, proliferation, migration, organization, differentiation and maturation. Inversely, the effects of cells on the ECM constructs' biophysical properties, under physiological-like conditions, remain still largely unknown. We hypothesized that by re-cellularizing porcine cardiac ECM (pcECM, as a model scaffold) some of the original biophysical properties of the myocardial tissue can be restored, which are related to the scaffold's surface and the bulk modifications consequent to cellularization. We performed a systematic biophysical assessment of pcECM scaffolds seeded with human mesenchymal stem cells (MSCs), a common multipotent cell source in cardiac regenerative medicine. We report a new type of FTE study in which cell interactions with a composite-scaffold were evaluated from the perspective of their contribution to the biophysical properties of the construct surface (FTIR, WETSEM™) and bulk (DSC, TGA, and mechanical testing). The results obtained were compared with acellular pcECM and native ventricular tissue serving as negative and positive controls, respectively. MSC recellularization resulted in an inter-fiber plasticization effect, increased protein density, masking of acylated glycosaminoglycans (GAGs) and active pcECM remodelling which further stabilized the reseeded construct and increased its denaturation resistance. The systematic approach presented herein, therefore, identifies cells as "biological plasticizers" and yields important methodologies, understanding, and data serving both as a reference as well as possible 'design criteria' for future studies in FTE.


Assuntos
Matriz Extracelular/química , Células-Tronco Mesenquimais/citologia , Miocárdio/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Glicosaminoglicanos/química , Humanos , Miocárdio/química , Suínos , Resistência à Tração
10.
Acta Biomater ; 50: 220-233, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27956366

RESUMO

Injectable scaffolds for cardiac tissue regeneration are a promising therapeutic approach for progressive heart failure following myocardial infarction (MI). Their major advantage lies in their delivery modality that is considered minimally invasive due to their direct injection into the myocardium. Biomaterials comprising such scaffolds should mimic the cardiac tissue in terms of composition, structure, mechanical support, and most importantly, bioactivity. Nonetheless, natural biomaterial-based gels may suffer from limited mechanical strength, which often fail to provide the long-term support required by the heart for contraction and relaxation. Here we present newly-developed injectable scaffolds, which are based on solubilized decellularized porcine cardiac extracellular matrix (pcECM) cross-linked with genipin alone or engineered with different amounts of chitosan to better control the gel's mechanical properties while still leveraging the ECM biological activity. We demonstrate that these new biohybrid materials are naturally remodeled by mesenchymal stem cells, while supporting high viabilities and affecting cell morphology and organization. They exhibit neither in vitro nor in vivo immunogenicity. Most importantly, their application in treating acute and long term chronic MI in rat models clearly demonstrates the significant therapeutic potential of these gels in the long-term (12weeks post MI). The pcECM-based gels enable not only preservation, but also improvement in cardiac function eight weeks post treatment, as measured using echocardiography as well as hemodynamics. Infiltration of progenitor cells into the gels highlights the possible biological remodeling properties of the ECM-based platform. STATEMENT OF SIGNIFICANCE: This work describes the development of new injectable scaffolds for cardiac tissue regeneration that are based on solubilized porcine cardiac extracellular matrix (ECM), combined with natural biomaterials: genipin, and chitosan. The design of such scaffolds aims at leveraging the natural bioactivity and unique structure of cardiac ECM, while overcoming its limited mechanical strength, which may fail to provide the long-term support required for heart contraction and relaxation. Here, we present a biocompatible gel-platform with custom-tailored mechanical properties that significantly improve cardiac function when injected into rat hearts following acute and chronic myocardial infarction. We clearly demonstrate the substantial therapeutic potential of these scaffolds, which not only preserved heart functions but also alleviated MI damage, even after the formation of a mature scar tissue.


Assuntos
Matriz Extracelular/química , Hidrogéis , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Alicerces Teciduais/química , Animais , Linhagem Celular , Quitosana/química , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Iridoides/química , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA