Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Crystallogr ; 55(Pt 4): 919-928, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35974731

RESUMO

A systematic study has been carried out to investigate the neutron transmission signal as a function of sample tem-per-ature. In particular, the experimentally de-ter-mined wavelength-dependent neutron attenuation spectra for a martensitic steel at tem-per-atures ranging from 21 to 700°C are com-pared with simulated data. A theoretical description that includes the Debye-Waller factor in order to describe the tem-per-ature influence on the neutron cross sections was im-plemented in the nxsPlotter software and used for the simulations. The analysis of the attenuation coefficients at varying tem-per-atures shows that the missing contributions due to elastic and inelastic scattering can be clearly distinguished: while the elastically scattered intensities decrease with higher tem-per-atures, the inelastically scattered intensities increase, and the two can be separated from each other by analysing unique sharp features in the form of Bragg edges. This study presents the first systematic approach to qu-antify this effect and can serve as a basis , for example, to correct measurements taken during in situ heat treatments, in many cases being a prerequisite for obtaining qu-anti-fiable results.

2.
J Appl Crystallogr ; 54(Pt 1): 32-41, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33833639

RESUMO

Energy-dispersive diffraction under both laboratory and synchrotron conditions was applied to study the hoop stress in the near-surface region of the inner wall of boreholes with a small diameter of 2 mm. By use of different X-ray beam cross sections for the sin2ψ measurements, it is demonstrated that the borehole-to-beam-diameter ratio must be considered in the evaluation. A beam cross section which is comparable to the borehole diameter reduces the slope of the d hkl φψ-sin2ψ distributions and thus invalidates the result of stress analysis. A quantitative relationship is applied, which allows the results obtained under the above conditions to be scaled so that they reflect the actual residual stress state at the measurement position. Owing to the small diffraction angles, energy-dispersive diffraction proves to be the only suitable experimental technique that allows a nondestructive and depth-resolved analysis of the hoop stress component at the inner surface of boreholes with a large length-to-diameter ratio.

3.
J Appl Crystallogr ; 53(Pt 4): 1130-1137, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32788906

RESUMO

EDDIDAT is a MATLAB-based graphical user interface for the convenient and versatile analysis of energy-dispersive diffraction data obtained at laboratory and synchrotron sources. The main focus of EDDIDAT up to now has been on the analysis of residual stresses, but it can also be used to prepare measurement data for subsequent phase analysis or analysis of preferred orientation. The program provides access to the depth-resolved analysis of residual stresses at different levels of approximation. Furthermore, the graphic representation of the results also serves for the consideration of microstructural and texture-related properties. The included material database allows for the quick analysis of the most common materials and is easily extendable. The plots and results produced with EDDIDAT can be exported to graphics and text files. EDDIDAT is designed to analyze diffraction data from various energy-dispersive X-ray sources. Hence it is possible to add new sources and implement the device-specific properties into EDDIDAT. The program is freely available to academic users.

4.
Materials (Basel) ; 12(4)2019 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-30813435

RESUMO

Residual stress/strain and microstructure used in additively manufactured material are strongly dependent on process parameter combination. With the aim to better understand and correlate process parameters used in electron beam melting (EBM) of Ti-6Al-4V with resulting phase distributions and residual stress/strains, extensive experimental work has been performed. A large number of polycrystalline Ti-6Al-4V specimens were produced with different optimized EBM process parameter combinations. These specimens were post-sequentially studied by using high-energy X-ray and neutron diffraction. In addition, visible light microscopy, scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD) studies were performed and linked to the other findings. Results show that the influence of scan speed and offset focus on resulting residual strain in a fully dense sample was not significant. In contrast to some previous literature, a uniform α- and ß-Ti phase distribution was found in all investigated specimens. Furthermore, no strong strain variations along the build direction with respect to the deposition were found. The magnitude of strain in α and ß phase show some variations both in the build plane and along the build direction, which seemed to correlate with the size of the primary ß grains. However, no relation was found between measured residual strains in α and ß phase. Large primary ß grains and texture appear to have a strong effect on X-ray based stress results with relatively small beam size, therefore it is suggested to use a large beam for representative bulk measurements and also to consider the prior ß grain size in experimental planning, as well as for mathematical modelling.

5.
Opt Express ; 14(25): 12071-5, 2006 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19529634

RESUMO

Tomographic images are often superimposed by so called ring artefacts. Ring artefacts are concentric rings in the images around the center of rotation of the tomographic setup caused e.g. by differences in the individual pixel response of the detector. They complicate the post processing of the data, i.e. the segmentation of individual image information. Hence, for a quantitative analysis of the tomographic images a significant reduction of these artefacts is essential. In this paper, a simple but efficient method to eliminate such artefacts during the reconstruction is proposed.

6.
Adv Mater ; 26(24): 4069-73, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24692200

RESUMO

Nondestructive 3D mapping of crystallographic phases is introduced providing distribution of phase fractions within the bulk (centimeter range) of samples with micrometer-scale resolution. The novel neutron tomography based technique overcomes critical limitations of existing techniques and offers a wide range of potential applications. It is demonstrated for steel samples exhibiting phase transformation after being subjected to tensile and torsional deformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA