Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 357(7): e2300575, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593283

RESUMO

A series of tacrine-donepezil hybrids were synthesized as potential multifunctional anti-Alzheimer's disease (AD) compounds. For this purpose, tacrine and the benzylpiperidine moiety of donepezil were fused with a hydrazone group to achieve a small library of tacrine-donepezil hybrids. In agreement with the design, all compounds showed inhibitory activity toward both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values in the low micromolar range. Kinetic studies on the most potent cholinesterase (ChE) inhibitors within the series showed a mixed-type inhibition mechanism on both enzymes. Also, the docking studies indicated that the compounds inhibit ChEs by dual binding site (DBS) interactions. Notably, tacrine-donepezil hybrids also exhibited significant neuroprotection against H2O2-induced cell death in a differentiated human neuroblastoma (SH-SY5Y) cell line at concentrations close to their IC50 values on ChEs and showed high to medium blood-brain barrier (BBB) permeability on human cerebral microvascular endothelial cells (HBEC-5i). Besides, the compounds do not cause remarkable toxicity in a human hepatocellular carcinoma cell line (HepG2) and SH-SY5Y cells. Additionally, the compounds were predicted to also have good bioavailability. Among the tested compounds, H4, H16, H17, and H24 stand out with their biological profile. Taken together, the proposed novel tacrine-donepezil scaffold represents a promising starting point for the development of novel anti-ChE multifunctional agents against AD.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Barreira Hematoencefálica , Butirilcolinesterase , Inibidores da Colinesterase , Donepezila , Desenho de Fármacos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores , Tacrina , Tacrina/farmacologia , Tacrina/química , Humanos , Donepezila/farmacologia , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Relação Estrutura-Atividade , Acetilcolinesterase/metabolismo , Barreira Hematoencefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Células Hep G2 , Linhagem Celular Tumoral
2.
Molecules ; 29(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542833

RESUMO

A group of functionalized fluorene derivatives that are structurally similar to the cellular prion protein ligand N,N'-(methylenedi-4,1-phenylene)bis [2-(1-pyrrolidinyl)acetamide] (GN8) have been synthesized. These compounds show remarkable native fluorescence due to the fluorene ring. The substituents introduced at positions 2 and 7 of the fluorene moiety are sufficiently flexible to accommodate the beta-conformational folding that develops in amyloidogenic proteins. Changes in the native fluorescence of these fluorene derivatives provide evidence of transformations in the amyloidogenic aggregation processes of insulin. The increase observed in the fluorescence intensity of the sensors in the presence of native insulin or amyloid aggregates suggest their potential use as fluorescence probes for detecting abnormal conformations; therefore, the compounds can be proposed for use as "turn-on" fluorescence sensors. Protein-sensor dissociation constants are in the 5-10 µM range and an intermolecular charge transfer process between the protein and the sensors can be successfully exploited for the sensitive detection of abnormal insulin conformations. The values obtained for the Stern-Volmer quenching constant for compound 4 as a consequence of the sensor-protein interaction are comparable to those obtained for the reference compound GN8. Fluorene derivatives showed good performance in scavenging reactive oxygen species (ROS), and they show antioxidant capacity according to the FRAP and DPPH assays.


Assuntos
Amiloide , Insulina , Amiloide/química , Proteínas Amiloidogênicas , Fluorometria , Fluorenos/química
3.
Cell Tissue Res ; 392(1): 337-347, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34989851

RESUMO

Prion diseases are fatal neurodegenerative disorders, for which there are no effective therapeutic and diagnostic agents. The main pathological hallmark has been identified as conformational changes of the cellular isoform prion protein (PrPC) to a misfolded isoform of the prion protein (PrPSc). Targeting PrPC and its conversion to PrPSc is still the central dogma in prion drug discovery, particularly in in silico and in vitro screening endeavors, leading to the identification of many small molecules with therapeutic potential. Nonetheless, multiple pathological targets are critically involved in the intricate pathogenesis of prion diseases. In this context, multi-target-directed ligands (MTDLs) emerge as valuable therapeutic approach for their potential to effectively counteract the complex etiopathogenesis by simultaneously modulating multiple targets. In addition, diagnosis occurs late in the disease process, and consequently a successful therapeutic intervention cannot be provided. In this respect, small molecule theranostics, which combine imaging and therapeutic properties, showed tremendous potential to cure and diagnose in vivo prion diseases. Herein, we review the major advances in prion drug discovery, from anti-prion small molecules identified by means of in silico and in vitro screening approaches to two rational strategies, namely MTDLs and theranostics, that have led to the identification of novel compounds with an expanded anti-prion profile.


Assuntos
Doenças Priônicas , Príons , Humanos , Proteínas Priônicas , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/diagnóstico , Doenças Priônicas/metabolismo , Príons/metabolismo , Descoberta de Drogas , Ligantes
4.
Bioorg Med Chem ; 91: 117419, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487339

RESUMO

Multi-target drug discovery is one of the most active fields in the search for new drugs against Alzheimer's disease (AD). This is because the complexity of AD pathological network might be adequately tackled by multi-target-directed ligands (MTDLs) aimed at modulating simultaneously multiple targets of such a network. In a continuation of our efforts to develop MTDLs for AD, we have been focusing on the molecular hybridization of the acetylcholinesterase inhibitor tacrine with the aim of expanding its anti-AD profile. Herein, we manipulated the structure of a previously developed tacrine-quinone hybrid (1). We designed and synthesized a novel set of MTDLs (2-6) by replacing the naphthoquinone scaffold of 1 with that of 2,5,8-quinolinetrione. The most interesting hybrid 3 inhibited cholinesterase enzymes at nanomolar concentrations. In addition, 3 exerted antioxidant effects in menadione-induced oxidative stress of SH-SY5Y cells. Importantly, 3 also showed low hepatotoxicity and good anti-amyloid aggregation properties. Remarkably, we uncovered the potential of the quinolinetrione scaffold, as a novel anti-amyloid aggregation and antioxidant motif to be used in further anti-AD MTDL drug discovery endeavors.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Tacrina/farmacologia , Tacrina/química , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase , Ligantes , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Antioxidantes/farmacologia , Peptídeos beta-Amiloides
5.
Chem Soc Rev ; 50(20): 11191-11207, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34553208

RESUMO

The aim of this tutorial review is to provide a general overview of processes, technologies and challenges in the production of pharmaceutical and bioactive compounds from food waste and lignocellulosic residues. Particular attention is given to benign-by-design processes instinctively devoted to environmental sustainability for the recovery of bioactive compounds from food waste as well as for the production of alcohols, acids, polyols, furans and aromatic compounds from lignocellulosic residues. At the same time, novel green synthetic routes for the production of active pharmaceutical ingredients and the development of novel bioactive compounds are discussed. Recent success industrial stories on the use of food waste and lignocellulosic residues for pharmaceutical and nutraceutical applications are also discussed.


Assuntos
Preparações Farmacêuticas , Eliminação de Resíduos , Biomassa , Suplementos Nutricionais
6.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362102

RESUMO

American trypanosomiasis is a worldwide health problem that requires attention due to ineffective treatment options. We evaluated n-butyl and isobutyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives against trypomastigotes of the Trypanosoma cruzi strains NINOA and INC-5. An in silico analysis of the interactions of 1,4-di-N-oxide on the active site of trypanothione reductase (TR) and an enzyme inhibition study was carried out. The n-butyl series compound identified as T-150 had the best trypanocidal activity against T. cruzi trypomastigotes, with a 13% TR inhibition at 44 µM. The derivative T-147 behaved as a mixed inhibitor with Ki and Ki' inhibition constants of 11.4 and 60.8 µM, respectively. This finding is comparable to the TR inhibitor mepacrine (Ki = 19 µM).


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Quinoxalinas/química , Óxidos/farmacologia , NADH NADPH Oxirredutases , Doença de Chagas/tratamento farmacológico , Inibidores Enzimáticos/química
7.
Molecules ; 27(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500608

RESUMO

The concept of polypharmacology embraces multiple drugs combined in a therapeutic regimen (drug combination or cocktail), fixed dose combinations (FDCs), and a single drug that binds to different targets (multi-target drug). A polypharmacology approach is widely applied in the treatment of acquired immunodeficiency syndrome (AIDS), providing life-saving therapies for millions of people living with HIV. Despite the success in viral load suppression and patient survival of combined antiretroviral therapy (cART), the development of new drugs has become imperative, owing to the emergence of resistant strains and poor adherence to cART. 3'-azido-2',3'-dideoxythymidine, also known as azidothymidine or zidovudine (AZT), is a widely applied starting scaffold in the search for new compounds, due to its good antiretroviral activity. Through the medicinal chemistry tool of molecular hybridization, AZT has been included in the structure of several compounds allowing for the development of multi-target-directed ligands (MTDLs) as antiretrovirals. This review aims to systematically explore and critically discuss AZT-based compounds as potential MTDLs for the treatment of AIDS. The review findings allowed us to conclude that: (i) AZT hybrids are still worth exploring, as they may provide highly active compounds targeting different steps of the HIV-1 replication cycle; (ii) AZT is a good starting point for the preparation of co-drugs with enhanced cell permeability.


Assuntos
Síndrome da Imunodeficiência Adquirida , Fármacos Anti-HIV , HIV-1 , Humanos , Zidovudina/farmacologia , Zidovudina/uso terapêutico , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Farmacóforo , Carga Viral , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico
8.
Molecules ; 26(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34576912

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disorder with a multifaceted pathogenesis. This fact has long halted the development of effective anti-AD drugs. Recently, a therapeutic strategy based on the exploitation of Brazilian biodiversity was set with the aim of discovering new disease-modifying and safe drugs for AD. In this review, we will illustrate our efforts in developing new molecules derived from Brazilian cashew nut shell liquid (CNSL), a natural oil and a byproduct of cashew nut food processing, with a high content of phenolic lipids. The rational modification of their structures has emerged as a successful medicinal chemistry approach to the development of novel anti-AD lead candidates. The biological profile of the newly developed CNSL derivatives towards validated AD targets will be discussed together with the role of these molecular targets in the context of AD pathogenesis.


Assuntos
Doença de Alzheimer , Anacardium , Nozes , Fenóis
9.
Molecules ; 26(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669839

RESUMO

Despite Alzheimer's disease (AD) incidence being projected to increase worldwide, the drugs currently on the market can only mitigate symptoms. Considering the failures of the classical paradigm "one target-one drug-one disease" in delivering effective medications for AD, polypharmacology appears to be a most viable therapeutic strategy. Polypharmacology can involve combinations of multiple drugs and/or single chemical entities modulating multiple targets. Taking inspiration from an ongoing clinical trial, this work aims to convert a promising cromolyn-ibuprofen drug combination into single-molecule "codrugs." Such codrugs should be able to similarly modulate neuroinflammatory and amyloid pathways, while showing peculiar pros and cons. By exploiting a linking strategy, we designed and synthesized a small set of cromolyn-ibuprofen conjugates (4-6). Preliminary plasma stability and neurotoxicity assays allowed us to select diamide 5 and ethanolamide 6 as promising compounds for further studies. We investigated their immunomodulatory profile in immortalized microglia cells, in vitro anti-aggregating activity towards Aß42-amyloid self-aggregation, and their cellular neuroprotective effect against Aß42-induced neurotoxicity. The fact that 6 effectively reduced Aß-induced neuronal death, prompted its investigation into an in vivo model. Notably, 6 was demonstrated to significantly increase the longevity of Aß42-expressing Drosophila and to improve fly locomotor performance.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cromolina Sódica/uso terapêutico , Ibuprofeno/uso terapêutico , Polifarmacologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromolina Sódica/síntese química , Cromolina Sódica/química , Cromolina Sódica/farmacologia , Drosophila/efeitos dos fármacos , Desenho de Fármacos , Endocitose/efeitos dos fármacos , Ibuprofeno/síntese química , Ibuprofeno/química , Ibuprofeno/farmacologia , Imunomodulação/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Agregados Proteicos/efeitos dos fármacos , Ratos Wistar
10.
Bioorg Chem ; 98: 103753, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32200328

RESUMO

Our goal was the evaluation of a series of N-1,2,3-triazole-isatin derivatives for multi-target activity which included cholinesterase (ChE) inhibition and ß-amyloid (Aß) peptide anti-aggregation. The compounds have shown considerable promise as butyrylcholinesterase (BuChE) inhibitors. Although the inhibition of eel acetylcholinesterase (eeAChE) was weak, the inhibitions against equine BuChE (eqBuChE) and human BuChE (hBuChE) were more significant with a best inhibition against eqBuChE of 0.46 µM. In some cases, these molecules gave better inhibitions for hBuChE than eqBuChE. For greater insights into their mode of action, molecular docking studies were carried out, followed by STD-NMR validation. In addition, some of these compounds showed weak Aß anti-aggregation activity. Hepatotoxicity studies showed that they were non-hepatoxic and neurotoxicity studies using neurite outgrowth experiments led to the conclusion that these compounds are only weakly neurotoxic.


Assuntos
Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Isatina/farmacologia , Triazóis/farmacologia , Peptídeos beta-Amiloides/metabolismo , Animais , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Electrophorus , Células Hep G2 , Cavalos , Humanos , Isatina/química , Estrutura Molecular , Agregados Proteicos , Relação Estrutura-Atividade , Triazóis/química
11.
Molecules ; 22(2)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28157150

RESUMO

Chagas disease or American trypanosomiasis is a worldwide public health problem. In this work, we evaluated 26 new propyl and isopropyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives as potential trypanocidal agents. Additionally, molecular docking and enzymatic assays on trypanothione reductase (TR) were performed to provide a basis for their potential mechanism of action. Seven compounds showed better trypanocidal activity on epimastigotes than the reference drugs, and only four displayed activity on trypomastigotes; T-085 was the lead compound with an IC50 = 59.9 and 73.02 µM on NINOA and INC-5 strain, respectively. An in silico analysis proposed compound T-085 as a potential TR inhibitor with better affinity than the natural substrate. Enzymatic analysis revealed that T-085 inhibits parasite TR non-competitively. Compound T-085 carries a carbonyl, a CF3, and an isopropyl carboxylate group at 2-, 3- and 7-position, respectively. These results suggest the chemical structure of this compound as a good starting point for the design and synthesis of novel trypanocidal derivatives with higher TR inhibitory potency and lower toxicity.


Assuntos
NADH NADPH Oxirredutases/antagonistas & inibidores , Quinoxalinas/química , Quinoxalinas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Sítios de Ligação , Concentração Inibidora 50 , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , NADH NADPH Oxirredutases/química , Testes de Sensibilidade Parasitária , Ligação Proteica , Relação Estrutura-Atividade , Trypanosoma cruzi/efeitos dos fármacos
12.
Chem Soc Rev ; 44(7): 1807-19, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25622714

RESUMO

Brain amyloid depositions are the main hallmarks of Alzheimer's and other protein misfolding diseases. Since they are believed to precede clinical symptoms by several years, imaging of such fibrillar aggregates is particularly suitable to diagnose the onset of the disease in its early stage and monitor its progression. In this context, near infrared (NIR) imaging has been proposed as a promising and non-invasive method to visualize amyloid plaques in vivo because of its acceptable depth of penetration and minimal degree of tissue damage. In this tutorial review, we describe the main chemical and physicochemical features of probes associated with fluorescence emission in the NIR region. The review focuses on the recent progress and improvements in the development of small-molecule NIR fluorescent probes and their in vivo application in living animals. In addition, the possible therapeutic application of NIR probes to block the pathological aggregation process will be discussed, raising the fascinating possibility of their exploitation as theranostic agents.


Assuntos
Peptídeos beta-Amiloides/análise , Corantes Fluorescentes/química , Neurociências , Placa Amiloide , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Humanos , Camundongos , Camundongos Transgênicos , Nanomedicina Teranóstica
13.
Molecules ; 21(4): 466, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-27070562

RESUMO

Multitarget drug discovery is one of the hottest topics and most active fields in the search for new molecules against Alzheimer's disease (AD). Over the last 20 years, many promising multitarget-directed ligands (MTDLs) have been identified and developed at a pre-clinical level. However, how to design them in a rational way remains the most fundamental challenge of medicinal chemists. This is related to the foundational question of achieving an optimized activity towards multiple targets of interest, while preserving drug-like properties. In this respect, large hybrid molecules and small fragments are poles apart. In this review article, our aim is to appraise what we have accomplished in the development of both hybrid- and fragment-like molecules directed to diverse AD targets (i.e., acetylcholinesterase, NMDA receptors, metal chelation, BACE-1 and GSK-3ß). In addition, we attempt to highlight what are the persistent needs that deserve to be improved and cared for, with the ultimate goal of moving an MTDL to AD clinical studies.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Descoberta de Drogas , Acetilcolinesterase/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Ligantes , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
14.
Angew Chem Int Ed Engl ; 54(5): 1578-82, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25504761

RESUMO

Cumulative evidence strongly supports that the amyloid and tau hypotheses are not mutually exclusive, but concomitantly contribute to neurodegeneration in Alzheimer's disease (AD). Thus, the development of multitarget drugs which are involved in both pathways might represent a promising therapeutic strategy. Accordingly, reported here in is the discovery of 6-amino-4-phenyl-3,4-dihydro-1,3,5-triazin-2(1H)-ones as the first class of molecules able to simultaneously modulate BACE-1 and GSK-3ß. Notably, one triazinone showed well-balanced in vitro potencies against the two enzymes (IC50 of (18.03±0.01) µM and (14.67±0.78) µM for BACE-1 and GSK-3ß, respectively). In cell-based assays, it displayed effective neuroprotective and neurogenic activities and no neurotoxicity. It also showed good brain permeability in a preliminary pharmacokinetic assessment in mice. Overall, triazinones might represent a promising starting point towards high quality lead compounds with an AD-modifying potential.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Inibidores Enzimáticos/química , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Triazinas/química , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Barreira Hematoencefálica/metabolismo , Domínio Catalítico , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Meia-Vida , Lipopolissacarídeos/toxicidade , Camundongos , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Simulação de Acoplamento Molecular , Óxido Nítrico Sintase Tipo II/metabolismo , Ligação Proteica , Ratos , Triazinas/metabolismo , Triazinas/farmacologia , Regulação para Cima/efeitos dos fármacos
15.
ACS Infect Dis ; 10(6): 1856-1870, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38724015

RESUMO

Antiparasitic drug development stands as a critical endeavor in combating infectious diseases which, by affecting the well-being of humans, animals, and the environment, pose significant global health challenges. In a scenario where conventional pharmacological interventions have proven inadequate, the One Health approach, which emphasizes interdisciplinary collaboration and holistic solutions, emerges as a vital strategy. By advocating for the integration of One Health principles into the R&D pharmaceutical pipeline, this Perspective promotes green chemistry methodologies to foster the development of environmentally friendly antiparasitic drugs for both human and animal health. Moreover, it highlights the urgent need to address vector-borne parasitic diseases (VBPDs) within the context of One Health-driven sustainable development, underscoring the pivotal role of medicinal chemists in driving transformative change. Aligned with the Sustainable Development Goals (SDGs) and the European Green Deal, this Perspective explores the application of the 12 Principles of Green Chemistry as a systematic framework to guide drug discovery and production efforts in the context of VBPD. Through interdisciplinary collaboration and a constant commitment to sustainability, the field can overcome the challenges posed by VBPD while promoting global and environmental responsibility. Serving as a call to action, scientists are urged to integrate One Health concepts and green chemistry principles into routine drug development practices, thereby paving the way for a more sustainable R&D pharmaceutical pipeline for antiparasitic drugs.


Assuntos
Antiparasitários , Química Verde , Saúde Única , Antiparasitários/química , Antiparasitários/farmacologia , Humanos , Animais , Descoberta de Drogas , Doenças Parasitárias/tratamento farmacológico , Desenvolvimento de Medicamentos , Doenças Transmitidas por Vetores , Desenvolvimento Sustentável
16.
J Med Chem ; 67(1): 402-419, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38164929

RESUMO

Trypanothione reductase (TR) is a suitable target for drug discovery approaches against leishmaniasis, although the identification of potent inhibitors is still challenging. Herein, we harnessed a fragment-based drug discovery (FBDD) strategy to develop new TR inhibitors. Previous crystallographic screening identified fragments 1-3, which provided ideal starting points for a medicinal chemistry campaign. In silico investigations revealed critical hotspots in the TR binding site, guiding our structure- and ligand-based structure-actvity relationship (SAR) exploration that yielded fragment-derived compounds 4-14. A trend of improvement in Leishmania infantum TR inhibition was detected along the optimization and confirmed by the crystal structures of 9, 10, and 14 in complex with Trypanosoma brucei TR. Compound 10 showed the best TR inhibitory profile (Ki = 0.2 µM), whereas 9 was the best one in terms of in vitro and ex vivo activity. Although further fine-tuning is needed to improve selectivity, we demonstrated the potentiality of FBDD on a classic but difficult target for leishmaniasis.


Assuntos
Inibidores Enzimáticos , Leishmaniose , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/química , NADH NADPH Oxirredutases/metabolismo , Leishmaniose/tratamento farmacológico , Sítios de Ligação
17.
RSC Med Chem ; 15(6): 2045-2062, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911150

RESUMO

Alzheimer's disease (AD) and cancer are among the most devastating diseases of the 21st century. Although the clinical manifestations are different and the cellular mechanisms underlying the pathologies are opposite, there are different classes of molecules that are effective in both diseases, such as quinone-based compounds and histone deacetylase inhibitors (HDACIs). Herein, we investigate the biological effects of a series of compounds built to exploit the beneficial effects of quinones and histone deacetylase inhibition (compounds 1-8). Among the different compounds, compound 6 turned out to be a potent cytotoxic agent in SH-SY5Y cancer cell line, with a half maximal inhibitory concentration (IC50) value lower than vorinostat and a pro-apoptotic activity. On the other hand, compound 8 was nontoxic up to the concentration of 100 µM and was highly effective in stimulating the proliferation of neural precursor cells (NPCs), as well as inducing differentiation into neurons, at low micromolar concentrations. In particular, it was able to induce NPC differentiation solely towards a neuronal-specific phenotype, without affecting glial cells commitment.

18.
ACS Med Chem Lett ; 15(4): 424-431, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38628790

RESUMO

As we celebrate International Women's Day 2024 with the theme "Inspire Inclusion", the women of the ACS Medicinal Chemistry Division (MEDI) want to foster a sense of belonging, relevance, and empowerment by sharing uplifting stories of what inspired them to become medicinal chemists. In this editorial, we are featuring female medicinal chemistry scientists to provide role models, encouragement, and inspiration to others. We asked women medicinal chemists to contribute a brief paragraph about what inspired them to become medicinal chemists or what inspires them today as medicinal chemists. The responses and contributions highlight their passions and motivations, such as their love of the sciences and their drive to improve human health by contributing to basic research and creating lifesaving drugs.

19.
J Med Chem ; 67(6): 4251-4258, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38456628

RESUMO

As we celebrate International Women's Day 2024 with the theme "Inspire Inclusion", the women of the ACS Medicinal Chemistry Division (MEDI) want to foster a sense of belonging, relevance, and empowerment by sharing uplifting stories of what inspired them to become medicinal chemists. In this editorial, we are featuring female medicinal chemistry scientists to provide role models, encouragement, and inspiration to others. We asked women medicinal chemists to contribute a brief paragraph about what inspired them to become medicinal chemists or what inspires them today as medicinal chemists. The responses and contributions highlight their passions and motivations, such as their love of the sciences and their drive to improve human health by contributing to basic research and creating lifesaving drugs.


Assuntos
Química Farmacêutica , Poder Psicológico , Humanos , Feminino
20.
Bioorg Med Chem Lett ; 23(23): 6254-8, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24140444

RESUMO

The anti-amyloid properties shared by several quinones inspired the design of a new series of hybrids derived from the multi-target drug candidate memoquin (1). The hybrids consist of a central benzoquinone core and a fragment taken from non-steroidal anti-inflammatory drugs, connected through polyamine linkers. The new hybrids retain the potent anti-aggregating activity of the parent 1, while exhibiting micromolar AChE inhibitory activities. Remarkably, 2, 4, (R)-6 and (S)-6 were Aß aggregation inhibitors even more potent than 1. The balanced amyloid/cholinesterase inhibitory profile is an added value that makes the present series of compounds promising leads against Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores da Colinesterase/farmacologia , Quinonas/farmacologia , Amiloide/antagonistas & inibidores , Amiloide/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacocinética , Humanos , Ligantes , Camundongos , Modelos Moleculares , Ligação Proteica , Quinonas/química , Quinonas/farmacocinética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA