Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Sports Med ; 36(10): 858-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26090877

RESUMO

The research presented here investigates the interaction between acute exercise, biological sex and risk-taking behavior. The study involved 20 amateur athletes (19-33 years old), 10 males and 10 females, who were asked to undergo subsequent experimental sessions designed to compare their risky behaviors on the Balloon Analogue Risk Task (BART) 34 at rest and while exercising at moderate intensity (60% of their maximal aerobic power). Results showed that physical exercise affected male and female participants differently: Whereas males became more risk seeking, females became more risk averse during exercise.


Assuntos
Exercício Físico/psicologia , Assunção de Riscos , Adulto , Feminino , Frequência Cardíaca/fisiologia , Humanos , Ácido Láctico/sangue , Masculino , Oxigênio/sangue , Fatores Sexuais , Inquéritos e Questionários , Adulto Jovem
2.
Nat Mater ; 11(4): 294-300, 2012 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-22306771

RESUMO

The quest for materials capable of realizing the next generation of electronic and photonic devices continues to fuel research on the electronic, optical and vibrational properties of graphene. Few-layer graphene (FLG) flakes with less than ten layers each show a distinctive band structure. Thus, there is an increasing interest in the physics and applications of FLGs. Raman spectroscopy is one of the most useful and versatile tools to probe graphene samples. Here, we uncover the interlayer shear mode of FLGs, ranging from bilayer graphene (BLG) to bulk graphite, and suggest that the corresponding Raman peak measures the interlayer coupling. This peak scales from ~43 cm(-1) in bulk graphite to ~31 cm(-1) in BLG. Its low energy makes it sensitive to near-Dirac point quasiparticles. Similar shear modes are expected in all layered materials, providing a direct probe of interlayer interactions.

3.
Nat Genet ; 23(4): 425-8, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10581028

RESUMO

At least eight inherited human neurodegenerative diseases are caused by expansion of a polyglutamine domain within the respective proteins. This confers dominant toxicity on the proteins, leading to dysfunction and loss of neurons. Expanded polyglutamine proteins form aggregates, including nuclear inclusions (NI), within neurons, possibly due to misfolding of the proteins. NI are ubiquitinated and sequester molecular chaperone proteins and proteasome components, suggesting that disease pathogenesis includes activation of cellular stress pathways to help refold, disaggregate or degrade the mutant disease proteins. Overexpression of specific chaperone proteins reduces polyglutamine aggregation in transfected cells, but whether this alters toxicity is unknown. Using a Drosophila melanogaster model of polyglutamine disease, we show that directed expression of the molecular chaperone HSP70 suppresses polyglutamine-induced neurodegeneration in vivo. Suppression by HSP70 occurred without a visible effect on NI formation, indicating that polyglutamine toxicity can be dissociated from formation of large aggregates. Our studies indicate that HSP70 or related molecular chaperones may provide a means of treating these and other neurodegenerative diseases associated with abnormal protein conformation and toxicity.


Assuntos
Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/fisiologia , Degeneração Neural/genética , Degeneração Neural/prevenção & controle , Peptídeos/genética , Peptídeos/fisiologia , Animais , Ataxina-3 , Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Olho/patologia , Feminino , Expressão Gênica , Humanos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/terapia , Masculino , Degeneração Neural/etiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Doenças Neurodegenerativas/terapia , Proteínas Nucleares , Estrutura Terciária de Proteína/genética , Proteínas Repressoras , Transfecção
4.
Dev Cell ; 1(4): 447-8, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11703935

RESUMO

Genes that regulate apoptosis are well defined. In contrast, it has not been clear what genes are central to necrotic cell loss. In the September 27th issue of Neuron, Xu et al. (2001) report a critical role for genes that regulate storage and release of Ca2+ from the endoplasmic reticulum as important to necrotic-like cellular degeneration in Caenorhabditis elegans.


Assuntos
Apoptose/fisiologia , Proteínas de Caenorhabditis elegans , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Canais Iônicos/fisiologia , Proteínas de Membrana , Animais , Caenorhabditis elegans
5.
J Cell Biol ; 106(5): 1615-23, 1988 May.
Artigo em Inglês | MEDLINE | ID: mdl-2836435

RESUMO

cAMP and cGMP had distinct effects on the regulation of ciliary motility in Paramecium. Using detergent-permeabilized cells reactivated to swim with MgATP, we observed effects of cyclic nucleotides and interactions with Ca2+ on the swimming speed and direction of reactivated cells. Both cAMP and cGMP increased forward swimming speed two- to threefold with similar half-maximal concentrations near 0.5 microM. The two cyclic nucleotides, however, had different effects in antagonism with the Ca2+ response of backward swimming and on the handedness of the helical swimming paths of reactivated cells. These results suggest that cAMP and cGMP differentially regulate the direction of the ciliary power stroke.


Assuntos
Cílios/fisiologia , AMP Cíclico/farmacologia , GMP Cíclico/farmacologia , Paramecium/fisiologia , Animais , Cálcio/fisiologia , Movimento Celular/efeitos dos fármacos , Cílios/efeitos dos fármacos , Modelos Biológicos , Paramecium/efeitos dos fármacos , Paramecium/ultraestrutura
6.
J Cell Biol ; 143(6): 1457-70, 1998 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-9852144

RESUMO

The inherited neurodegenerative diseases caused by an expanded glutamine repeat share the pathologic feature of intranuclear aggregates or inclusions (NI). Here in cell-based studies of the spinocerebellar ataxia type-3 disease protein, ataxin-3, we address two issues central to aggregation: the role of polyglutamine in recruiting proteins into NI and the role of nuclear localization in promoting aggregation. We demonstrate that full-length ataxin-3 is readily recruited from the cytoplasm into NI seeded either by a pathologic ataxin-3 fragment or by a second unrelated glutamine-repeat disease protein, ataxin-1. Experiments with green fluorescence protein/polyglutamine fusion proteins show that a glutamine repeat is sufficient to recruit an otherwise irrelevant protein into NI, and studies of human disease tissue and a Drosophila transgenic model provide evidence that specific glutamine-repeat-containing proteins, including TATA-binding protein and Eyes Absent protein, are recruited into NI in vivo. Finally, we show that nuclear localization promotes aggregation: an ataxin-3 fragment containing a nonpathologic repeat of 27 glutamines forms inclusions only when targeted to the nucleus. Our findings establish the importance of the polyglutamine domain in mediating recruitment and suggest that pathogenesis may be linked in part to the sequestering of glutamine-containing cellular proteins. In addition, we demonstrate that the nuclear environment may be critical for seeding polyglutamine aggregates.


Assuntos
Núcleo Celular/fisiologia , Proteínas de Drosophila , Corpos de Inclusão/fisiologia , Doença de Machado-Joseph/genética , Proteínas do Tecido Nervoso/fisiologia , Peptídeos/metabolismo , Animais , Animais Geneticamente Modificados , Ataxina-3 , Núcleo Celular/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Drosophila , Proteínas do Olho/metabolismo , Humanos , Corpos de Inclusão/ultraestrutura , Doença de Machado-Joseph/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras , TATA Box , Proteína de Ligação a TATA-Box , Fatores de Transcrição/metabolismo , Transfecção
7.
Curr Opin Genet Dev ; 5(4): 507-15, 1995 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7580144

RESUMO

Recent analyses have shed light on the roles of genes involved in early events of eye cell determination and the spatiotemporal control of differentiation within the eye field. These genes function at sequential steps in the programming, initiation, or progression of differentiation, highlighting an elegant orchestration of gene activities to achieve this striking developmental event. Progress has been made in the study of the coordination between cell cycle control and cell differentiation, as well as in the genetic control of morphogenetic movements within the developing eye disc.


Assuntos
Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genes de Insetos , Células Fotorreceptoras de Invertebrados/embriologia , Animais , Ciclo Celular , Diferenciação Celular , Drosophila/genética , Olho/embriologia , Morfogênese
8.
Acta Neuropathol Commun ; 6(1): 84, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157956

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating and fatal motor neuron disease. Diagnosis typically occurs in the fifth decade of life and the disease progresses rapidly leading to death within ~ 2-5 years of symptomatic onset. There is no cure, and the few available treatments offer only a modest extension in patient survival. A protein central to ALS is the nuclear RNA/DNA-binding protein, TDP-43. In > 95% of ALS patients, TDP-43 is cleared from the nucleus and forms phosphorylated protein aggregates in the cytoplasm of affected neurons and glia. We recently defined that poly(ADP-ribose) (PAR) activity regulates TDP-43-associated toxicity. PAR is a posttranslational modification that is attached to target proteins by PAR polymerases (PARPs). PARP-1 and PARP-2 are the major enzymes that are active in the nucleus. Here, we uncovered that the motor neurons of the ALS spinal cord were associated with elevated nuclear PAR, suggesting elevated PARP activity. Veliparib, a small-molecule inhibitor of nuclear PARP-1/2, mitigated the formation of cytoplasmic TDP-43 aggregates in mammalian cells. In primary spinal-cord cultures from rat, Veliparib also inhibited TDP-43-associated neuronal death. These studies uncover that PAR activity is misregulated in the ALS spinal cord, and a small-molecular inhibitor of PARP-1/2 activity may have therapeutic potential in the treatment of ALS and related disorders associated with abnormal TDP-43 homeostasis.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Núcleo Celular/metabolismo , Neurônios Motores/ultraestrutura , Poli Adenosina Difosfato Ribose/metabolismo , Adulto , Idoso , Esclerose Lateral Amiotrófica/genética , Animais , Ataxina-2/genética , Ataxina-2/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzimidazóis/farmacologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Estudos de Coortes , Proteínas de Ligação a DNA , Relação Dose-Resposta a Droga , Feminino , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Mutação/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ratos , Saponinas/farmacologia , Medula Espinal/patologia , Transfecção , Triterpenos/farmacologia
9.
Trends Genet ; 16(4): 161-7, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10729831

RESUMO

The ability of Drosophila genetics to reveal new insights into human neurodegenerative disease is highlighted not only by mutants in flies that show neuronal cell loss, but also by targeted expression of human disease genes in the fly. Moreover, study of Drosophila homologs of various human disease genes provides new insight into fundamental aspects of protein function. These recent findings confirm the remarkable homology of gene function in flies when compared with humans. With the advent of complete genomic sequencing on the horizon, Drosophila will continue to be an outstanding model system in which to unravel the complexities, causes and treatments for human neural degeneration.


Assuntos
Modelos Genéticos , Doenças Neurodegenerativas/genética , Animais , Modelos Animais de Doenças , Drosophila/genética , Humanos , Mutagênese
10.
Cell Death Differ ; 4(1): 4-11, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16465204

RESUMO

During eye development, cell death interplays dynamically with events of differentiation to achieve the remarkably patterned structure of the fly compound eye. Mutations in genes that affect the normal developmental process can lead to excessive death of progenitor cells, or, alternatively, to the differentiation of supernumerary neurons, pigment and cone cells due to survival of cells that would normally be eliminated. These data reveal that eye development contains cell selection processes: only certain cells are selected to undergo differentiation, and supernumerary cells are actively eliminated by cell death pathways to achieve the highly ordered lattice of the eye. The final number of cells that comprise the eye is controlled through a balance of cell proliferation with proper cell differentiation and removal by cell death.

11.
Cell Death Differ ; 7(11): 1075-80, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11139281

RESUMO

Drosophila has provided a powerful genetic system in which to elucidate fundamental cellular pathways in the context of a developing and functioning nervous system. Recently, Drosophila has been applied toward elucidating mechanisms of human neurodegenerative disease, including Alzheimer's, Parkinson's and Huntington's diseases. Drosophila allows study of the normal function of disease proteins, as well as study of effects of familial mutations upon targeted expression of human mutant forms in the fly. These studies have revealed new insight into the normal functions of such disease proteins, as well as provided models in Drosophila that will allow genetic approaches to be applied toward elucidating ways to prevent or delay toxic effects of such disease proteins. These, and studies to come that follow from the recently completed sequence of the Drosophila genome, underscore the contributions that Drosophila as a model genetic system stands to contribute toward the understanding of human neurodegenerative disease.


Assuntos
Modelos Animais de Doenças , Proteínas de Drosophila , Drosophila melanogaster/genética , Doenças Neurodegenerativas/genética , Transgenes , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Animais Geneticamente Modificados , Genes de Insetos , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Presenilinas
12.
Genetics ; 138(4): 1171-9, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-7896099

RESUMO

The Drosophila eyes absent (eya) gene is required for survival and differentiation of eye progenitor cells. Loss of gene function in the eye results in reduction or absence of the adult compound eye. Certain combinations of eya alleles undergo partial complementation, with dramatic restoration of eye size. This interaction is sensitive to the relative positions of the two alleles in the genome; rearrangements predicted to disrupt pairing of chromosomal homologs in the eya region disrupt complementation. Ten X-ray-induced rearrangements that suppress the interaction obey the same general rules as those that disrupt transvection at the bithorax complex and the decapentaplegic gene. Moreover, like transvection in those cases, the interaction at eya depends on the presence of normal zeste function. The discovery of transvection at eya suggests that transvection interactions of this type may be more prevalent than generally thought.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/genética , Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Alelos , Animais , Proteínas de Ligação a DNA/fisiologia , Drosophila melanogaster/ultraestrutura , Anormalidades do Olho/genética , Proteínas do Olho/fisiologia , Feminino , Genes de Insetos/efeitos da radiação , Teste de Complementação Genética , Masculino
13.
Genetics ; 155(2): 709-20, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10835393

RESUMO

The eyes absent (eya) gene is critical to eye formation in Drosophila; upon loss of eya function, eye progenitor cells die by programmed cell death. Moreover, ectopic eya expression directs eye formation, and eya functionally synergizes in vivo and physically interacts in vitro with two other genes of eye development, sine oculis and dachshund. The Eya protein sequence, while highly conserved to vertebrates, is novel. To define amino acids critical to the function of the Eya protein, we have sequenced eya alleles. These mutations have revealed that loss of the entire Eya Domain is null for eya activity, but that alleles with truncations within the Eya Domain display partial function. We then extended the molecular genetic analysis to interactions within the Eya Domain. This analysis has revealed regions of special importance to interaction with Sine Oculis or Dachshund. Select eya missense mutations within the Eya Domain diminished the interactions with Sine Oculis or Dachshund. Taken together, these data suggest that the conserved Eya Domain is critical for eya activity and may have functional subregions within it.


Assuntos
Proteínas de Drosophila , Drosophila/genética , Proteínas do Olho/genética , Mutação de Sentido Incorreto , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Primers do DNA , Proteínas do Olho/química , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
14.
Genetics ; 154(1): 237-46, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10628984

RESUMO

The eyes absent (eya) gene is critical for normal eye development in Drosophila and is highly conserved to vertebrates. To define regions of the gene critical for eye function, we have defined the mutations in the four viable eya alleles. Two of these mutations are eye specific and undergo transvection with other mutations in the gene. These were found to be deletion mutations that remove regulatory sequence critical for eye cell expression of the gene. Two other viable alleles cause a reduced eye phenotype and affect the function of the gene in additional tissues, such as the ocelli. These mutations were found to be insertion mutations of different transposable elements within the 5' UTR of the transcript. Detailed analysis of one of these revealed that the transposable element has become subject to regulation by eye enhancer sequences of the eya gene, disrupting normal expression of EYA in the eye. More extended analysis of the deletion region in the eye-specific alleles indicated that the deleted region defines an enhancer that activates gene expression in eye progenitor cells. This enhancer is responsive to ectopic expression of the eyeless gene. This analysis has defined a critical regulatory region required for proper eye expression of the eya gene.


Assuntos
Proteínas de Drosophila , Drosophila/genética , Elementos Facilitadores Genéticos , Proteínas do Olho/genética , Olho/metabolismo , Regiões 5' não Traduzidas , Alelos , Animais , Sequência de Bases , DNA , Elementos de DNA Transponíveis , Regulação da Expressão Gênica , Dados de Sequência Molecular , Mutagênese Insercional , Deleção de Sequência
15.
Mech Dev ; 73(2): 193-202, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9622628

RESUMO

In eyes absent (eya) mutants, eye progenitor cells undergo cell death early in development. Whereas the phenotype of eya1 is limited to the eye, other mutations are lethal. Genetic and molecular analysis reveals that mutations in one region of the gene cause embryonic lethality, whereas mutations throughout the gene cause defects in eye development. Mosaic analysis indicates that the eya requirement is cell autonomous. In eye-specific mutants, expression in the eye disc is lacking while embryonic expression is normal. Both the type I and type II transcripts are expressed in the developing eye, and expression of either can rescue the eye phenotype. These data indicate a specific requirement for eya function in eye progenitor cells that is normally fulfilled by both transcripts.


Assuntos
Proteínas de Drosophila , Embrião não Mamífero/metabolismo , Proteínas do Olho/genética , Olho/metabolismo , Animais , DNA Complementar , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Heterozigoto , Masculino , Mutação , Fenótipo , RNA Mensageiro/genética
16.
Neurology ; 76(24): 2062-5, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21562248

RESUMO

OBJECTIVE: Given the recent finding of an association between intermediate-length polyglutamine (polyQ) expansions in ataxin 2 and amyotrophic lateral sclerosis (ALS), we sought to determine whether expansions in other polyQ disease genes were associated with ALS. METHODS: We assessed the polyQ lengths of ataxin 1, ataxin 3, ataxin 6, ataxin 7, TBP, atrophin 1, and huntingtin in several hundred patients with sporadic ALS and healthy controls. RESULTS: Other than ataxin 2, we did not identify a significant association with the other polyQ genes and ALS. CONCLUSIONS: These data indicate that the effects of ataxin 2 polyQ expansions on ALS risk are likely to be rooted in the biology of ataxin 2 or ataxin 2-specific interactions, rather than the presence of an expanded polyQ repeat per se. These findings have important consequences for understanding the role of ataxin 2 in ALS pathogenesis and provide a framework for future mechanistic studies.


Assuntos
Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA/genética , Peptídeos/genética , Ataxina-1 , Ataxina-3 , Ataxina-7 , Ataxinas , Canais de Cálcio/genética , Humanos , Proteína Huntingtina , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteína de Ligação a TATA-Box/genética
19.
Parkinsonism Relat Disord ; 7(3): 171-175, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11331183

RESUMO

Polyglutamine disease is a class of human neurodegenerative diseases characterized by late-onset, progressive neural degeneration. The molecular mechanism is expansion, within the coding region of the respective genes, of a CAG repeat encoding glutamine. The expanded polyglutamine domain confers dominant toxicity on the disease protein, leading to neuronal dysfunction and degeneration. In order to develop Drosophila as a model system to approach and study such human diseases, a human gene encoding an expanded polyglutamine protein was introduced into the fly. Expression of this protein with a pathogenic polyglutamine domain causes late-onset, progressive degeneration of cells in the fly, as it does in humans with disease and mouse transgenic models. Moreover, the protein shows abnormal protein aggregation in flies, similar to human disease tissue. These studies indicate that molecular mechanisms of polyglutamine-induced neurodegeneration are conserved in Drosophila. Through these studies and additional studies to develop fly models for other human neurodegenerative diseases, including Parkinson's disease, the power of Drosophila genetics can be brought to bear toward the molecular understanding and treatment of human neurodegeneration.

20.
Philos Trans R Soc Lond B Biol Sci ; 354(1386): 1057-60, 1999 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-10434305

RESUMO

To apply genetics to the problem of human polyglutamine-repeat disease, we recreated polyglutamine-repeat disease in Drosophila melanogaster. To do this, we expressed forms of the human gene encoding spinocerebellar ataxia type 3, also called Machado-Joseph disease (SCA-3/MJD). This gene is responsible for the most common form of human ataxia worldwide. Expression of a normal form of the MJD protein with 27 polyglutamines (MJDtr-Q27) had no phenotype. However, expression of a form of the protein with an expanded run of 78 glutamines (MJDtr-Q78) caused late onset progressive degeneration. In addition, the MJDtr-Q78 formed abnormal protein aggregates, or nuclear inclusions (NIs), whereas the control protein was cytoplasmic. These data indicate that the mechanisms of human polyglutamine-repeat disease are conserved to Drosophila. We are currently using this model to address potential mechanisms by which the mutant disease protein causes neural degeneration, as well as to define genes that can prevent polyglutamine-induced degeneration. By applying the power of Drosophila genetics to the problem of human polyglutamine-induced neural degeneration, we hope to identify ways to prevent and treat these diseases in humans.


Assuntos
Drosophila melanogaster/genética , Doença de Machado-Joseph/genética , Proteínas do Tecido Nervoso/genética , Peptídeos/genética , Animais , Animais Geneticamente Modificados , Ataxina-3 , Humanos , Modelos Genéticos , Degeneração Neural/genética , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas Nucleares , Sequências Repetitivas de Aminoácidos , Proteínas Repressoras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA