Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mar Policy ; 137: 104954, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35035031

RESUMO

Resilience of food systems is key to ensuring food security through crisis. The COVID-19 pandemic presents an unprecedented shock that reveals varying levels of resilience of increasingly interconnected food systems across the globe. We contribute to the ongoing debate about whether increased connectivity reduces or enhances resilience in the context of rural Pacific food systems, while examining how communities have adapted to the global shocks associated with the pandemic to ensure food security. We conducted 609 interviews across 199 coastal villages from May to October 2020 in Federated States of Micronesia, Fiji, Palau, Papua New Guinea, Solomon Islands, Tonga, and Tuvalu to understand community-level impacts and adaptations during the first 5-10 months of the COVID-19 crisis. We found that local food production practices and food sharing conferred resilience, and that imported foods could aid or inhibit resilience. Communities in countries more reliant on imports were almost twice as likely to report food insecurity compared to those least reliant. However, in places dealing with a concurrent cyclone, local food systems were impaired, and imported foods proved critical. Our findings suggest that policy in the Pacific should bolster sustainable local food production and practices. Pacific states should avoid becoming overly reliant on food imports, while having measures in place to support food security after disasters, supplementing locally produced and preserved foods with imported foods when necessary. Developing policies that promote resilient food systems can help prepare communities for future shocks, including those anticipated with climate change.

2.
Microb Ecol ; 78(1): 136-146, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30288545

RESUMO

The Fiji Islands is an archipelago of more than 330 islands located in the tropics of the South Pacific Ocean. Microbial diversity and biogeography in this region is still not understood. Here, we present the first molecular characterization of fungal, bacterial, and archaeal communities in soils from different habitats within the largest Fijian island, Viti Levu. Soil samples were collected from under native vegetation in maritime-, forest-, stream-, grassland-, and casuarina-dominated habitats, as well as from under the introduced agricultural crops sugarcane, cassava, pine, and mahogany. Soil microbial diversity was analyzed through MiSeq amplicon sequencing of 16S (for prokaryotes), ITS, LSU ribosomal DNA (for fungi). Prokaryotic communities were dominated by Proteobacteria (~ 25%), Acidobacteria (~ 19%), and Actinobacteria (~ 17%), and there were no indicator species associated with particular habitats. ITS and LSU were congruent in ß-diversity patterns of fungi, and fungal communities were dominated by Ascomycota (~ 57-64%), followed by Basidiomycota (~ 20-23%) and Mucoromycota (~ 10%) according to ITS, or Chytridiomycota (~ 9%) according to LSU. Indicator species analysis of fungi found statistical associations of Cenococcum, Wilcoxina, and Rhizopogon to Pinus caribaea. We hypothesize these obligate biotrophic fungi were co-introduced with their host plant. Entoloma was statistically associated with grassland soils, and Fusarium and Lecythophora with soils under cassava. Observed richness varied from 65 (casuarina) to 404 OTUs (cassava) for fungi according to ITS region, and from 1268 (pine) to 2931 OTUs (cassava) for bacteria and archaea. A major finding of this research is that nearly 25% of the fungal OTUs are poorly classified, indicative of novel biodiversity in this region. This preliminary survey provides important baseline data on fungal, bacterial, and archaeal diversity and biogeography in the Fiji Islands.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biodiversidade , Fungos/isolamento & purificação , Microbiologia do Solo , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Ecossistema , Fiji , Fungos/classificação , Fungos/genética , Espécies Introduzidas , Filogenia , Plantas/microbiologia , Solo/química
4.
Oecologia ; 169(1): 187-98, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22038059

RESUMO

Maintaining coral reef resilience against increasing anthropogenic disturbance is critical for effective reef management. Resilience is partially determined by how processes, such as herbivory and nutrient supply, affect coral recovery versus macroalgal proliferation following disturbances. However, the relative effects of herbivory versus nutrient enrichment on algal proliferation remain debated. Here, we manipulated herbivory and nutrients on a coral-dominated reef protected from fishing, and on an adjacent macroalgal-dominated reef subject to fishing and riverine discharge, over 152 days. On both reefs, herbivore exclusion increased total and upright macroalgal cover by 9-46 times, upright macroalgal biomass by 23-84 times, and cyanobacteria cover by 0-27 times, but decreased cover of encrusting coralline algae by 46-100% and short turf algae by 14-39%. In contrast, nutrient enrichment had no effect on algal proliferation, but suppressed cover of total macroalgae (by 33-42%) and cyanobacteria (by 71% on the protected reef) when herbivores were excluded. Herbivore exclusion, but not nutrient enrichment, also increased sediment accumulation, suggesting a strong link between herbivory, macroalgal growth, and sediment retention. Growth rates of the corals Porites cylindrica and Acropora millepora were 30-35% greater on the protected versus fished reef, but nutrient and herbivore manipulations within a site did not affect coral growth. Cumulatively, these data suggest that herbivory rather than eutrophication plays the dominant role in mediating macroalgal proliferation, that macroalgae trap sediments that may further suppress herbivory and enhance macroalgal dominance, and that corals are relatively resistant to damage from some macroalgae but are significantly impacted by ambient reef condition.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Cadeia Alimentar , Herbivoria , Animais , Antozoários/crescimento & desenvolvimento , Biomassa , Eutrofização , Sedimentos Geológicos , Nitrogênio/metabolismo , Phaeophyceae/crescimento & desenvolvimento , Phaeophyceae/fisiologia , Dinâmica Populacional , Clima Tropical
5.
Sci Rep ; 11(1): 7147, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785764

RESUMO

Benthic cyanobacterial mats (BCMs) are becoming increasingly common on coral reefs. In Fiji, blooms generally occur in nearshore areas during warm months but some are starting to prevail through cold months. Many fundamental knowledge gaps about BCM proliferation remain, including their composition and how they influence reef processes. This study examined a seasonal BCM bloom occurring in a 17-year-old no-take inshore reef area in Fiji. Surveys quantified the coverage of various BCM-types and estimated the biomass of key herbivorous fish functional groups. Using remote video observations, we compared fish herbivory (bite rates) on substrate covered primarily by BCMs (> 50%) to substrate lacking BCMs (< 10%) and looked for indications of fish (opportunistically) consuming BCMs. Samples of different BCM-types were analysed by microscopy and next-generation amplicon sequencing (16S rRNA). In total, BCMs covered 51 ± 4% (mean ± s.e.m) of the benthos. Herbivorous fish biomass was relatively high (212 ± 36 kg/ha) with good representation across functional groups. Bite rates were significantly reduced on BCM-dominated substratum, and no fish were unambiguously observed consuming BCMs. Seven different BCM-types were identified, with most containing a complex consortium of cyanobacteria. These results provide insight into BCM composition and impacts on inshore Pacific reefs.


Assuntos
Cianobactérias/fisiologia , Peixes/fisiologia , Proliferação Nociva de Algas , Herbivoria/fisiologia , Microalgas/fisiologia , Animais , Recifes de Corais , Microbiota/fisiologia
6.
Sci Data ; 8(1): 35, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514754

RESUMO

The discovery of multi-species synchronous spawning of scleractinian corals on the Great Barrier Reef in the 1980s stimulated an extraordinary effort to document spawning times in other parts of the globe. Unfortunately, most of these data remain unpublished which limits our understanding of regional and global reproductive patterns. The Coral Spawning Database (CSD) collates much of these disparate data into a single place. The CSD includes 6178 observations (3085 of which were unpublished) of the time or day of spawning for over 300 scleractinian species in 61 genera from 101 sites in the Indo-Pacific. The goal of the CSD is to provide open access to coral spawning data to accelerate our understanding of coral reproductive biology and to provide a baseline against which to evaluate any future changes in reproductive phenology.


Assuntos
Antozoários/fisiologia , Animais , Oceano Índico , Oceano Pacífico , Reprodução
7.
Mar Ecol Prog Ser ; 586: 11-20, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30505047

RESUMO

Tropical reefs are commonly transitioning from coral- to macroalgal-dominance, producing abrupt, and often lasting, shifts in community composition and ecosystem function. Although negative effects of macroalgae on corals are well documented, whether such effects vary with spatial scale or the density of macroalgae remains inadequately understood, as does the legacy of their impact on coral growth. Using closely adjacent coral- versus macroalgal-dominated areas, we tested effects of macroalgal competition on the Indo-Pacific corals Acropora millepora and Porites cylindrica. When corals were transplanted to areas of: i) macroalgal-dominance, ii) macroalgal-dominance but with nearby macroalgae removed, or iii) coral-dominance lacking macroalgae, coral growth was equivalently high in plots without macroalgae and low (62-90% less) in plots with macroalgae, regardless of location. In a separate experiment, we raised corals above the benthos in each area and exposed them to differing densities of the dominant macroalga Sargassum polycystum. Coral survivorship was high (≥ 93% after 3 months) and did not differ among treatments, whereas the growth of both coral species decreased as a function of Sargassum density. When Sargassum was removed after two months, there was no legacy effect of macroalgal density on coral growth over the next seven months; however, there was no compensation for previously depressed growth. In sum, macroalgal impacts were density dependent, occurred only if macroalgae were in close contact, and coral growth was resilient to prior macroalgal contact. The temporal and spatial constraints of these interactions suggest that corals may be surprisingly resilient to periodic macroalgal competition, which could have important implications for ecosystem trajectories that lead to reef decline or recovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA