Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Pathol ; 178(6): 2547-59, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21641380

RESUMO

Organic cation transporters (OCT1-3 and OCTN1/2) facilitate cardiac uptake of endogenous compounds and numerous drugs. Genetic variants of OCTN2, for example, reduce uptake of carnitine, leading to heart failure. Whether expression and function of OCTs and OCTNs are altered by disease has not been explored in detail. We therefore studied cardiac expression, heart failure-dependent regulation, and affinity to cardiovascular drugs of these transporters. Cardiac transporter mRNA levels were OCTN2>OCT3>OCTN1>OCT1 (OCT2 was not detected). Proteins were localized in vascular structures (OCT3/OCTN2/OCTN1) and cardiomyocytes (OCT1/OCTN1). Functional studies revealed a specific drug-interaction profile with pronounced inhibition of OCT1 function, for example, carvedilol [half maximal inhibitory concentration (IC50), 1.4 µmol/L], diltiazem (IC50, 1.7 µmol/L), or propafenone (IC50, 1.0 µmol/L). With use of the cardiomyopathy model of coxsackievirus-infected mice, Octn2mRNA expression was significantly reduced (56% of controls, 8 days after infection). Accordingly, in endomyocardial biopsy specimens OCTN2 expression was significantly reduced in patients with dilated cardiomyopathy, whereas the expression of OCT1-3 and OCTN1 was not affected. For OCTN2 we observed a significant correlation between expression and left ventricular ejection fraction (r = 0.53, P < 0.0001) and the presence of cardiac CD3⁺ T cells (r = -0.45, P < 0.05), respectively. OCT1, OCT3, OCTN1, and OCTN2 are expressed in the human heart and interact with cardiovascular drugs. OCTN2 expression is selectively reduced in dilated cardiomyopathy patients and predicts the impairment of cardiac function.


Assuntos
Cardiomiopatia Dilatada/mortalidade , Miocárdio/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Adulto , Idoso , Animais , Biópsia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Fármacos Cardiovasculares/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Miocardite/metabolismo , Miocardite/patologia , Miocárdio/patologia , Proteínas de Transporte de Cátions Orgânicos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Biochem Pharmacol ; 94(2): 109-29, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25660617

RESUMO

The clinical efficiency of the highly potent antitumor agent doxorubicin is limited by cardiotoxic effects. In a murine doxorubicin cardiotoxicity model, increased endothelin-1 (ET-1) expression and cardioprotective effects of the dual ET-1 blocker bosentan were demonstrated. To date it is unclear if combined blocking of endothelin A/B receptors is necessary or whether selective inhibition of one of the ET-1 receptors is sufficient for the observed cardioprotection. Therefore, we investigated the impact of dual (bosentan) and single endothelin receptor antagonism through sitaxentan (receptor A blocker) or BQ788 (receptor B blocker) in a murine doxorubicin cardiotoxicity model (C57BL/6N). Simultaneous administration of each endothelin receptor antagonist (ERA) with doxorubicin resulted in a significantly improved hemodynamic performance in comparison to the impaired cardiac function in control mice with bosentan being most effective but closely followed by sitaxentan and also BQ788. This cardioprotection was not caused by diminished doxorubicin levels in heart since the doxorubicin content in cardiac tissue was not altered by ERAs significantly. However, whole transcript expression profiling showed partly different effects of the ERAs on doxorubicin-modulated cardiac gene expression of genes involved in signal transduction (e.g. Stat3, Pim1, Akt1, Plcb2), fibrosis (e.g. Myl4), energy production (e.g. Ant1) or oxidative stress (e.g. Aox1). Furthermore, doxorubicin-mediated gene regulations were verified in the murine cardiomyocyte model HL-1 showing partly reversed expression patterns after co-administration of the ERAs. In summary, our results demonstrate strong cardioprotective effects of blocking ET-1 receptors against the doxorubicin-related cardiomyopathy and provide evidence to potential underlying signaling pathways.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiomiopatias/prevenção & controle , Cardiotônicos/farmacologia , Doxorrubicina/toxicidade , Receptor de Endotelina A/efeitos dos fármacos , Receptor de Endotelina B/efeitos dos fármacos , Animais , Cardiomiopatias/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA