Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 20(9): 16334-53, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26370956

RESUMO

Valorization of lignin is essential for the economic viability of the biorefinery concept. For example, the enhancement of lignin hydrophobicity by chemical esterification is known to improve its miscibility in apolar polyolefin matrices, thereby helping the production of bio-based composites. To this end and due to its many reactive hydroxyl groups, lignin is a challenging macromolecular substrate for biocatalyzed esterification in non-conventional media. The present work describes for the first time the lipase-catalyzed transesterification of Kraft lignin in ionic liquids (ILs). Three lipases, three 1-butyl-3-methylimidazolium based ILs and ethyl oleate as long chain acyl donor were selected. Best results were obtained with a hydrophilic/hydrophobic binary IL system (1-butyl-3-methylimidazolium trifluoromethanesulfonate/1-butyl-3-methylimidazolium hexafluoro- phosphate, 1/1 v/v) and the immobilized lipase B from Candida antarctica (CALB) that afforded a promising transesterification yield (ca. 30%). Similar performances were achieved by using 1-butyl-3-methylimidazolium hexafluorophosphate as a coating agent for CALB rather than as a co-solvent in 1-butyl-3-methylimidazolium trifluoromethane-sulfonate thus limiting the use of hydrophobic IL. Structural characterization of lignin oleate was performed by spectroscopic studies (FTIR and ¹H-NMR). The synthesized lignin oleate exhibited interesting thermal and textural properties, different from those of the original Kraft lignin.


Assuntos
Líquidos Iônicos/química , Lignina/metabolismo , Lipase/metabolismo , Esterificação
2.
Nat Mater ; 12(5): 452-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23542871

RESUMO

Electrochemical energy storage is one of the main societal challenges of this century. The performances of classical lithium-ion technology based on liquid electrolytes have made great advances in the past two decades, but the intrinsic instability of liquid electrolytes results in safety issues. Solid polymer electrolytes would be a perfect solution to those safety issues, miniaturization and enhancement of energy density. However, as in liquids, the fraction of charge carried by lithium ions is small (<20%), limiting the power performances. Solid polymer electrolytes operate at 80 °C, resulting in poor mechanical properties and a limited electrochemical stability window. Here we describe a multifunctional single-ion polymer electrolyte based on polyanionic block copolymers comprising polystyrene segments. It overcomes most of the above limitations, with a lithium-ion transport number close to unity, excellent mechanical properties and an electrochemical stability window spanning 5 V versus Li(+)/Li. A prototype battery using this polyelectrolyte outperforms a conventional battery based on a polymer electrolyte.

3.
J Colloid Interface Sci ; 307(1): 101-8, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17174321

RESUMO

The adsorption behaviour of calcium hydroxide onto illite and kaolin clay minerals was investigated by monitoring with atomic emission spectroscopy and pH measurements the amounts of ions left in solution after exposing clay minerals to calcium hydroxide solutions of various concentrations. Both clay minerals can adsorb calcium and hydroxyl ions. Rather than just considering proton exchanges at the clay mineral surfaces, the adsorption is explained by an approach based on Lewis description of molecules. With this approach, a mechanism for calcium hydroxide adsorption not only at the edges of the clay particles but also onto the faces is proposed. In order to gain a better insight onto the active groups at the surface of the studied clay minerals, adsorption of pyridine and ammonia on illite and kaolin was followed by FTIR spectroscopy. These measurements gave the signature of edges, which are marginally involved in interactions with calcium ions.

4.
Beilstein J Nanotechnol ; 6: 1821-39, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26425434

RESUMO

The state of the art of conversion reactions of metal hydrides (MH) with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g(-1) at a suitable potential (0.5 V vs Li(+)/Li(0)) and the lowest electrode polarization (<0.2 V) for conversion materials. Conversion process reaction mechanisms with lithium are subsequently detailed for MgH2, TiH2, complex hydrides Mg2MH x and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MH x + xLi(+) + xe(-) in equilibrium with M + xLiH. Other reaction paths-involving solid solutions, metastable distorted phases, and phases with low hydrogen content-were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent nano-research prospects which share the knowledge of both hydrogen-storage and lithium-anode communities.

5.
Nanoscale ; 6(23): 14459-66, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25340960

RESUMO

A promising anode material for Li-ion batteries based on MgH2 with around 5 nm average particles size was synthesized by a bottom-up method. A series of several composites containing MgH2 nanoparticles well dispersed into a porous carbon host has been prepared with different metal content up to 70 wt%. A narrow particle size distribution (1-10 nm) of the MgH2 nanospecies with around 5.5 nm average size can be controlled up to 50 wt% Mg. After a ball milling treatment under Ar, the composite containing 50 wt% Mg shows an impressive cycle life stability with a good electrochemical capacity of around 500 mA h g(-1). Moreover, the nanoparticles' size distribution is stable during cycling.

6.
Carbohydr Res ; 381: 12-8, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24056009

RESUMO

The use of Brønsted acid ionic liquid (BAIL) as a catalyst for the activation of unreactive and unprotected glycosyl donors has been demonstrated for the first time in aqueous solution.


Assuntos
Ácidos/química , Hexoses/síntese química , Líquidos Iônicos/química , Pentoses/síntese química , Catálise , Glicosilação , Hexoses/química , Estrutura Molecular , Pentoses/química , Soluções , Água/química
7.
J Colloid Interface Sci ; 352(2): 309-15, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20880537

RESUMO

Both concentrated and diluted sodium silicate solutions have been investigated by combining (29)Si NMR spectroscopy and SAXS experiments. The chemical nature of the entities responsible for the high siliceous species solubility observed in such alkaline concentrated sodium silicate solutions and their evolution according to dilution have been identified. For the most concentrated solution ([Si]=7 mol/l; pH=11.56; Si/Na atomic ratio=1.71), the results evidence the preponderant presence of neutral Si(7)O(18)H(4)Na(4) complexes, which behave like colloids of about 0.6-0.8 nm able to form very small aggregates with an average size lower than 3 nm. Addition of distilled water to this initial concentrated solution leads, on one hand, to a doubling of the colloid size, i.e. 1.2-1.5 nm, and, on the other hand, to a progressive decrease of the aggregate size until their total disappearance. Such a behavior could be explained by considering, first, the dissociation of the neutral Si(7)O(18)H(4)Na(4) complexes present in the concentrated solution into Na(+) ions and charged (Si(7)O(18)H(4)Na(4-n))(n-) complexes (with 1 ≤ n ≤ 4) and, second, the condensation of these siliceous charged species in order to form larger (Si(7y)O(18y-z)H(4y-2z)Na((4-n)y))(ny-) colloids. The mean size of these colloids suggests that the condensation occurs between 2 and 8 (Si(7)O(18)H(4)Na(4-n))(n-) groups.


Assuntos
Silicatos/química , Silício/química , Isótopos , Espectroscopia de Ressonância Magnética/normas , Tamanho da Partícula , Padrões de Referência , Espalhamento a Baixo Ângulo , Soluções , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA