Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(1): 90-105.e13, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34942119

RESUMO

Neurodevelopmental cognitive disorders provide insights into mechanisms of human brain development. Here, we report an intellectual disability syndrome caused by the loss of APC7, a core component of the E3 ubiquitin ligase anaphase promoting complex (APC). In mechanistic studies, we uncover a critical role for APC7 during the recruitment and ubiquitination of APC substrates. In proteomics analyses of the brain from mice harboring the patient-specific APC7 mutation, we identify the chromatin-associated protein Ki-67 as an APC7-dependent substrate of the APC in neurons. Conditional knockout of the APC coactivator protein Cdh1, but not Cdc20, leads to the accumulation of Ki-67 protein in neurons in vivo, suggesting that APC7 is required for the function of Cdh1-APC in the brain. Deregulated neuronal Ki-67 upon APC7 loss localizes predominantly to constitutive heterochromatin. Our findings define an essential function for APC7 and Cdh1-APC in neuronal heterochromatin regulation, with implications for understanding human brain development and disease.


Assuntos
Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Encéfalo/enzimologia , Heterocromatina/metabolismo , Deficiência Intelectual/enzimologia , Células-Tronco Neurais/enzimologia , Neurogênese , Adolescente , Animais , Antígenos CD , Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase/genética , Comportamento Animal , Encéfalo/crescimento & desenvolvimento , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Heterocromatina/genética , Humanos , Lactente , Deficiência Intelectual/patologia , Deficiência Intelectual/fisiopatologia , Deficiência Intelectual/psicologia , Inteligência , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitose , Mutação , Células-Tronco Neurais/patologia , Proteólise , Transdução de Sinais , Síndrome , Ubiquitinação , Adulto Jovem
2.
Nature ; 605(7911): 722-727, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35545673

RESUMO

Cellular diversification is critical for specialized functions of the brain including learning and memory1. Single-cell RNA sequencing facilitates transcriptomic profiling of distinct major types of neuron2-4, but the divergence of transcriptomic profiles within a neuronal population and their link to function remain poorly understood. Here we isolate nuclei tagged5 in specific cell types followed by single-nucleus RNA sequencing to profile Purkinje neurons and map their responses to motor activity and learning. We find that two major subpopulations of Purkinje neurons, identified by expression of the genes Aldoc and Plcb4, bear distinct transcriptomic features. Plcb4+, but not Aldoc+, Purkinje neurons exhibit robust plasticity of gene expression in mice subjected to sensorimotor and learning experience. In vivo calcium imaging and optogenetic perturbation reveal that Plcb4+ Purkinje neurons have a crucial role in associative learning. Integrating single-nucleus RNA sequencing datasets with weighted gene co-expression network analysis uncovers a learning gene module that includes components of FGFR2 signalling in Plcb4+ Purkinje neurons. Knockout of Fgfr2 in Plcb4+ Purkinje neurons in mice using CRISPR disrupts motor learning. Our findings define how diversification of Purkinje neurons is linked to their responses in motor learning and provide a foundation for understanding their differential vulnerability to neurological disorders.


Assuntos
Células de Purkinje , Transcriptoma , Animais , Cerebelo , Aprendizagem/fisiologia , Camundongos , Camundongos Knockout , Plasticidade Neuronal/genética , Neurônios/fisiologia , Células de Purkinje/metabolismo , Transcriptoma/genética
3.
EMBO Rep ; 25(3): 1256-1281, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429579

RESUMO

The plant homeodomain zinc-finger protein, PHF6, is a transcriptional regulator, and PHF6 germline mutations cause the X-linked intellectual disability (XLID) Börjeson-Forssman-Lehmann syndrome (BFLS). The mechanisms by which PHF6 regulates transcription and how its mutations cause BFLS remain poorly characterized. Here, we show genome-wide binding of PHF6 in the developing cortex in the vicinity of genes involved in central nervous system development and neurogenesis. Characterization of BFLS mice harbouring PHF6 patient mutations reveals an increase in embryonic neural stem cell (eNSC) self-renewal and a reduction of neural progenitors. We identify a panel of Ephrin receptors (EphRs) as direct transcriptional targets of PHF6. Mechanistically, we show that PHF6 regulation of EphR is impaired in BFLS mice and in conditional Phf6 knock-out mice. Knockdown of EphR-A phenocopies the PHF6 loss-of-function defects in altering eNSCs, and its forced expression rescues defects of BFLS mice-derived eNSCs. Our data indicate that PHF6 directly promotes Ephrin receptor expression to control eNSC behaviour in the developing brain, and that this pathway is impaired in BFLS.


Assuntos
Epilepsia , Face/anormalidades , Dedos/anormalidades , Transtornos do Crescimento , Hipogonadismo , Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Obesidade , Humanos , Camundongos , Animais , Deficiência Intelectual/genética , Proteínas Repressoras , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Fatores de Transcrição
4.
N Engl J Med ; 387(5): 421-432, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35921451

RESUMO

BACKGROUND: Aggregated α-synuclein plays an important role in the pathogenesis of Parkinson's disease. The monoclonal antibody prasinezumab, directed at aggregated α-synuclein, is being studied for its effect on Parkinson's disease. METHODS: In this phase 2 trial, we randomly assigned participants with early-stage Parkinson's disease in a 1:1:1 ratio to receive intravenous placebo or prasinezumab at a dose of 1500 mg or 4500 mg every 4 weeks for 52 weeks. The primary end point was the change from baseline to week 52 in the sum of scores on parts I, II, and III of the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS; range, 0 to 236, with higher scores indicating greater impairment). Secondary end points included the dopamine transporter levels in the putamen of the hemisphere ipsilateral to the clinically more affected side of the body, as measured by 123I-ioflupane single-photon-emission computed tomography (SPECT). RESULTS: A total of 316 participants were enrolled; 105 were assigned to receive placebo, 105 to receive 1500 mg of prasinezumab, and 106 to receive 4500 mg of prasinezumab. The baseline mean MDS-UPDRS scores were 32.0 in the placebo group, 31.5 in the 1500-mg group, and 30.8 in the 4500-mg group, and mean (±SE) changes from baseline to 52 weeks were 9.4±1.2 in the placebo group, 7.4±1.2 in the 1500-mg group (difference vs. placebo, -2.0; 80% confidence interval [CI], -4.2 to 0.2; P = 0.24), and 8.8±1.2 in the 4500-mg group (difference vs. placebo, -0.6; 80% CI, -2.8 to 1.6; P = 0.72). There was no substantial difference between the active-treatment groups and the placebo group in dopamine transporter levels on SPECT. The results for most clinical secondary end points were similar in the active-treatment groups and the placebo group. Serious adverse events occurred in 6.7% of the participants in the 1500-mg group and in 7.5% of those in the 4500-mg group; infusion reactions occurred in 19.0% and 34.0%, respectively. CONCLUSIONS: Prasinezumab therapy had no meaningful effect on global or imaging measures of Parkinson's disease progression as compared with placebo and was associated with infusion reactions. (Funded by F. Hoffmann-La Roche and Prothena Biosciences; PASADENA ClinicalTrials.gov number, NCT03100149.).


Assuntos
Anticorpos Monoclonais Humanizados , Antiparkinsonianos , Doença de Parkinson , alfa-Sinucleína , Anticorpos Monoclonais Humanizados/uso terapêutico , Antiparkinsonianos/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Dopamina/uso terapêutico , Método Duplo-Cego , Humanos , Doença de Parkinson/tratamento farmacológico , Resultado do Tratamento , alfa-Sinucleína/antagonistas & inibidores
5.
Nature ; 569(7758): 708-713, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31068695

RESUMO

Neuronal-activity-dependent transcription couples sensory experience to adaptive responses of the brain including learning and memory. Mechanisms of activity-dependent gene expression including alterations of the epigenome have been characterized1-8. However, the fundamental question of whether sensory experience remodels chromatin architecture in the adult brain in vivo to induce neural code transformations and learning and memory remains to be addressed. Here we use in vivo calcium imaging, optogenetics and pharmacological approaches to show that granule neuron activation in the anterior dorsal cerebellar vermis has a crucial role in a delay tactile startle learning paradigm in mice. Of note, using large-scale transcriptome and chromatin profiling, we show that activation of the motor-learning-linked granule neuron circuit reorganizes neuronal chromatin including through long-distance enhancer-promoter and transcriptionally active compartment interactions to orchestrate distinct granule neuron gene expression modules. Conditional CRISPR knockout of the chromatin architecture regulator cohesin in anterior dorsal cerebellar vermis granule neurons in adult mice disrupts enhancer-promoter interactions, activity-dependent transcription and motor learning. These findings define how sensory experience patterns chromatin architecture and neural circuit coding in the brain to drive motor learning.


Assuntos
Retroalimentação Sensorial , Genoma , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Vias Neurais , Plasticidade Neuronal/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Vermis Cerebelar/citologia , Vermis Cerebelar/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Feminino , Masculino , Camundongos , Fibras Musgosas Hipocampais , Regiões Promotoras Genéticas/genética , Células de Purkinje , Reflexo de Sobressalto
6.
Nature ; 570(7760): E33, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31114059

RESUMO

In this Letter, '≥' should be '≤' in the sentence: "Intra-chromosomal reads were further split into short-range reads (≥1 kb) and long-range reads (>1 kb)". This error has been corrected online.An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Cell ; 136(2): 322-36, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19167333

RESUMO

The ubiquitin ligase anaphase-promoting complex (APC) recruits the coactivator Cdc20 to drive mitosis in cycling cells. However, the nonmitotic functions of Cdc20-APC have remained unexplored. We report that Cdc20-APC plays an essential role in dendrite morphogenesis in postmitotic neurons. Knockdown of Cdc20 in cerebellar slices and in postnatal rats in vivo profoundly impairs the formation of granule neuron dendrite arbors in the cerebellar cortex. Remarkably, Cdc20 is enriched at the centrosome in neurons, and the centrosomal localization is critical for Cdc20-dependent dendrite development. We also find that the centrosome-associated protein histone deacetylase 6 (HDAC6) promotes the polyubiquitination of Cdc20, stimulates the activity of centrosomal Cdc20-APC, and drives the differentiation of dendrites. These findings define a postmitotic function for Cdc20-APC in the morphogenesis of dendrites in the mammalian brain. The identification of a centrosomal Cdc20-APC ubiquitin signaling pathway holds important implications for diverse biological processes, including neuronal connectivity and plasticity.


Assuntos
Centrossomo/metabolismo , Córtex Cerebelar/citologia , Dendritos/metabolismo , Neurônios/citologia , Transdução de Sinais , Ciclossomo-Complexo Promotor de Anáfase , Animais , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Técnicas In Vitro , Proteína 1 Inibidora de Diferenciação/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Complexos Ubiquitina-Proteína Ligase/metabolismo
8.
Genes Dev ; 30(6): 622-38, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26980187

RESUMO

Control of protein abundance by the ubiquitin-proteasome system is essential for normal brain development and function. Just over a decade ago, the first post-mitotic function of the anaphase-promoting complex, a major cell cycle-regulated E3 ubiquitin ligase, was discovered in the control of axon growth and patterning in the mammalian brain. Since then, a large number of studies have identified additional novel roles for the anaphase-promoting complex in diverse aspects of neuronal connectivity and plasticity in the developing and mature nervous system. In this review, we discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis, glial differentiation and migration, neuronal survival and metabolism, neuronal morphogenesis, synapse formation and plasticity, and learning and memory. We also provide a perspective on future investigations of the anaphase-promoting complex in neurobiology.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Sistema Nervoso/embriologia , Neurogênese/fisiologia , Ciclossomo-Complexo Promotor de Anáfase/genética , Animais , Encéfalo/embriologia , Humanos , Estrutura Molecular , Sinapses/metabolismo
9.
Cell ; 135(5): 907-18, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19041753

RESUMO

Genomic instability and alterations in gene expression are hallmarks of eukaryotic aging. The yeast histone deacetylase Sir2 silences transcription and stabilizes repetitive DNA, but during aging or in response to a DNA break, the Sir complex relocalizes to sites of genomic instability, resulting in the desilencing of genes that cause sterility, a characteristic of yeast aging. Using embryonic stem cells, we show that mammalian Sir2, SIRT1, represses repetitive DNA and a functionally diverse set of genes across the mouse genome. In response to DNA damage, SIRT1 dissociates from these loci and relocalizes to DNA breaks to promote repair, resulting in transcriptional changes that parallel those in the aging mouse brain. Increased SIRT1 expression promotes survival in a mouse model of genomic instability and suppresses age-dependent transcriptional changes. Thus, DNA damage-induced redistribution of SIRT1 and other chromatin-modifying proteins may be a conserved mechanism of aging in eukaryotes.


Assuntos
Envelhecimento/genética , Cromatina/metabolismo , Instabilidade Genômica , Sirtuínas/genética , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Células-Tronco Embrionárias , Técnicas de Inativação de Genes , Humanos , Linfoma/metabolismo , Camundongos , Dados de Sequência Molecular , Estresse Oxidativo , Sirtuína 1 , Organismos Livres de Patógenos Específicos , Neoplasias do Timo/metabolismo , Leveduras/citologia , Leveduras/metabolismo
10.
BMC Biol ; 19(1): 147, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34320968

RESUMO

BACKGROUND: Copy number variants (CNVs) linked to genes involved in nervous system development or function are often associated with neuropsychiatric disease. While CNVs involving deletions generally cause severe and highly penetrant patient phenotypes, CNVs leading to duplications tend instead to exhibit widely variable and less penetrant phenotypic expressivity among affected individuals. CNVs located on chromosome 15q13.3 affecting the alpha-7 nicotinic acetylcholine receptor subunit (CHRNA7) gene contribute to multiple neuropsychiatric disorders with highly variable penetrance. However, the basis of such differential penetrance remains uncharacterized. Here, we generated induced pluripotent stem cell (iPSC) models from first-degree relatives with a 15q13.3 duplication and analyzed their cellular phenotypes to uncover a basis for the dissimilar phenotypic expressivity. RESULTS: The first-degree relatives studied included a boy with autism and emotional dysregulation (the affected proband-AP) and his clinically unaffected mother (UM), with comparison to unrelated control models lacking this duplication. Potential contributors to neuropsychiatric impairment were modeled in iPSC-derived cortical excitatory and inhibitory neurons. The AP-derived model uniquely exhibited disruptions of cellular physiology and neurodevelopment not observed in either the UM or unrelated controls. These included enhanced neural progenitor proliferation but impaired neuronal differentiation, maturation, and migration, and increased endoplasmic reticulum (ER) stress. Both the neuronal migration deficit and elevated ER stress could be selectively rescued by different pharmacologic agents. Neuronal gene expression was also dysregulated in the AP, including reduced expression of genes related to behavior, psychological disorders, neuritogenesis, neuronal migration, and Wnt, axonal guidance, and GABA receptor signaling. The UM model instead exhibited upregulated expression of genes in many of these same pathways, suggesting that molecular compensation could have contributed to the lack of neurodevelopmental phenotypes in this model. However, both AP- and UM-derived neurons exhibited shared alterations of neuronal function, including increased action potential firing and elevated cholinergic activity, consistent with increased homomeric CHRNA7 channel activity. CONCLUSIONS: These data define both diagnosis-associated cellular phenotypes and shared functional anomalies related to CHRNA7 duplication that may contribute to variable phenotypic penetrance in individuals with 15q13.3 duplication. The capacity for pharmacological agents to rescue some neurodevelopmental anomalies associated with diagnosis suggests avenues for intervention for carriers of this duplication and other CNVs that cause related disorders.


Assuntos
Cromossomos Humanos Par 15 , Variações do Número de Cópias de DNA , Receptor Nicotínico de Acetilcolina alfa7/genética , Cromossomos Humanos Par 15/genética , Humanos , Masculino , Neurônios , Fenótipo
11.
J Neurosci ; 39(34): 6626-6643, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31235645

RESUMO

The vermal cerebellum is a hub of sensorimotor integration critical for postural control and locomotion, but the nature and developmental organization of afferent information to this region have remained poorly understood in vivo Here, we use in vivo two-photon calcium imaging of the vermal cerebellum in awake behaving male and female mice to record granule neuron responses to diverse sensorimotor cues targeting visual, auditory, somatosensory, and motor domains. Use of an activity-independent marker revealed that approximately half (54%) of vermal granule neurons were activated during these recordings. A multikernel linear model distinguished the relative influences of external stimuli and co-occurring movements on neural responses, indicating that, among the subset of activated granule neurons, locomotion (44%-56%) and facial air puffs (50%) were more commonly and reliably encoded than visual (31%-32%) and auditory (19%-28%) stimuli. Strikingly, we also uncover populations of granule neurons that respond differentially to voluntary and forced locomotion, whereas other granule neurons in the same region respond similarly to locomotion in both conditions. Finally, by combining two-photon calcium imaging with birth date labeling of granule neurons via in vivo electroporation, we find that early- and late-born granule neurons convey similarly diverse sensorimotor information to spatially distinct regions of the molecular layer. Collectively, our findings elucidate the nature and developmental organization of sensorimotor information in vermal granule neurons of the developing mammalian brain.SIGNIFICANCE STATEMENT Cerebellar granule neurons comprise over half the neurons in the brain, and their coding properties have been the subject of theoretical and experimental interest for over a half-century. In this study, we directly test long-held theories about encoding of sensorimotor stimuli in the cerebellum and compare the in vivo coding properties of early- and late-born granule neurons. Strikingly, we identify populations of granule neurons that differentially encode voluntary and forced locomotion and find that, although the birth order of granule neurons specifies the positioning of their parallel fiber axons, both early- and late-born granule neurons convey a functionally diverse sensorimotor code. These findings constitute important conceptual advances in understanding the principles underlying cerebellar circuit development and function.


Assuntos
Cerebelo/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Animais , Cerebelo/crescimento & desenvolvimento , Sinais (Psicologia) , Grânulos Citoplasmáticos/fisiologia , Eletroporação , Feminino , Modelos Lineares , Locomoção/fisiologia , Masculino , Camundongos , Atividade Motora/fisiologia , Neurogênese , Estimulação Luminosa , Estimulação Física
12.
J Neurosci ; 39(1): 44-62, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30425119

RESUMO

Control of neuronal precursor cell proliferation is essential for normal brain development, and deregulation of this fundamental developmental event contributes to brain diseases. Typically, neuronal precursor cell proliferation extends over long periods of time during brain development. However, how neuronal precursor proliferation is regulated in a temporally specific manner remains to be elucidated. Here, we report that conditional KO of the transcriptional regulator SnoN in cerebellar granule neuron precursors robustly inhibits the proliferation of these cells and promotes their cell cycle exit at later stages of cerebellar development in the postnatal male and female mouse brain. In laser capture microdissection followed by RNA-Seq, designed to profile gene expression specifically in the external granule layer of the cerebellum, we find that SnoN promotes the expression of cell proliferation genes and concomitantly represses differentiation genes in granule neuron precursors in vivo Remarkably, bioinformatics analyses reveal that SnoN-regulated genes contain binding sites for the transcription factors N-myc and Pax6, which promote the proliferation and differentiation of granule neuron precursors, respectively. Accordingly, we uncover novel physical interactions of SnoN with N-myc and Pax6 in cells. In behavior analyses, conditional KO of SnoN impairs cerebellar-dependent learning in a delayed eye-blink conditioning paradigm, suggesting that SnoN-regulation of granule neuron precursor proliferation bears functional consequences at the organismal level. Our findings define a novel function and mechanism for the major transcriptional regulator SnoN in the control of granule neuron precursor proliferation in the mammalian brain.SIGNIFICANCE STATEMENT This study reports the discovery that the transcriptional regulator SnoN plays a crucial role in the proliferation of cerebellar granule neuron precursors in the postnatal mouse brain. Conditional KO of SnoN in granule neuron precursors robustly inhibits the proliferation of these cells and promotes their cycle exit specifically at later stages of cerebellar development, with biological consequences of impaired cerebellar-dependent learning. Genomics and bioinformatics analyses reveal that SnoN promotes the expression of cell proliferation genes and concomitantly represses cell differentiation genes in vivo Although SnoN has been implicated in distinct aspects of the development of postmitotic neurons, this study identifies a novel function for SnoN in neuronal precursors in the mammalian brain.


Assuntos
Encéfalo/citologia , Proliferação de Células , Cerebelo/fisiologia , Células-Tronco Neurais/fisiologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Animais , Comportamento Animal , Piscadela/fisiologia , Encéfalo/crescimento & desenvolvimento , Diferenciação Celular/genética , Cerebelo/citologia , Biologia Computacional , Grânulos Citoplasmáticos/fisiologia , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Genes myc/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/fisiologia
13.
BMC Bioinformatics ; 21(1): 269, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600248

RESUMO

BACKGROUND: High throughput RNA sequencing is a powerful approach to study gene expression. Due to the complex multiple-steps protocols in data acquisition, extreme deviation of a sample from samples of the same treatment group may occur due to technical variation or true biological differences. The high-dimensionality of the data with few biological replicates make it challenging to accurately detect those samples, and this issue is not well studied in the literature currently. Robust statistics is a family of theories and techniques aim to detect the outliers by first fitting the majority of the data and then flagging data points that deviate from it. Robust statistics have been widely used in multivariate data analysis for outlier detection in chemometrics and engineering. Here we apply robust statistics on RNA-seq data analysis. RESULTS: We report the use of two robust principal component analysis (rPCA) methods, PcaHubert and PcaGrid, to detect outlier samples in multiple simulated and real biological RNA-seq data sets with positive control outlier samples. PcaGrid achieved 100% sensitivity and 100% specificity in all the tests using positive control outliers with varying degrees of divergence. We applied rPCA methods and classical principal component analysis (cPCA) on an RNA-Seq data set profiling gene expression of the external granule layer in the cerebellum of control and conditional SnoN knockout mice. Both rPCA methods detected the same two outlier samples but cPCA failed to detect any. We performed differentially expressed gene detection before and after outlier removal as well as with and without batch effect modeling. We validated gene expression changes using quantitative reverse transcription PCR and used the result as reference to compare the performance of eight different data analysis strategies. Removing outliers without batch effect modeling performed the best in term of detecting biologically relevant differentially expressed genes. CONCLUSIONS: rPCA implemented in the PcaGrid function is an accurate and objective method to detect outlier samples. It is well suited for high-dimensional data with small sample sizes like RNA-seq data. Outlier removal can significantly improve the performance of differential gene detection and downstream functional analysis.


Assuntos
Análise de Componente Principal , RNA-Seq/métodos , Animais , Cerebelo/metabolismo , Feminino , Masculino , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Genes Dev ; 26(24): 2780-801, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23222102

RESUMO

The FoxO family of transcription factors is known to slow aging downstream from the insulin/IGF (insulin-like growth factor) signaling pathway. The most recently discovered FoxO isoform in mammals, FoxO6, is highly enriched in the adult hippocampus. However, the importance of FoxO factors in cognition is largely unknown. Here we generated mice lacking FoxO6 and found that these mice display normal learning but impaired memory consolidation in contextual fear conditioning and novel object recognition. Using stereotactic injection of viruses into the hippocampus of adult wild-type mice, we found that FoxO6 activity in the adult hippocampus is required for memory consolidation. Genome-wide approaches revealed that FoxO6 regulates a program of genes involved in synaptic function upon learning in the hippocampus. Consistently, FoxO6 deficiency results in decreased dendritic spine density in hippocampal neurons in vitro and in vivo. Thus, FoxO6 may promote memory consolidation by regulating a program coordinating neuronal connectivity in the hippocampus, which could have important implications for physiological and pathological age-dependent decline in memory.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Memória/fisiologia , Animais , Contagem de Células , Células Cultivadas , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Fatores de Transcrição Forkhead/genética , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Regulação Miogênica/metabolismo , Sinapses/genética , Sinapses/metabolismo
15.
J Neurosci ; 38(21): 4985-4995, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29712777

RESUMO

The mTOR signaling pathway regulates protein synthesis and diverse aspects of neuronal morphology that are important for brain development and function. To identify proteins controlled translationally by mTOR signaling, we performed ribosome profiling analyses in mouse cortical neurons and embryonic stem cells upon acute mTOR inhibition. Among proteins whose translation was significantly affected by mTOR inhibition selectively in neurons, we identified the cytoskeletal regulator protein palladin, which is localized within the cell body and axons in hippocampal neurons. Knockdown of palladin eliminated supernumerary axons induced by suppression of the tuberous sclerosis complex protein TSC1 in neurons, demonstrating that palladin regulates neuronal morphogenesis downstream of mTOR signaling. Our findings provide novel insights into an mTOR-dependent mechanism that controls neuronal morphogenesis through translational regulation.SIGNIFICANCE STATEMENT This study reports the discovery of neuron-specific protein translational responses to alterations of mTOR activity. By using ribosome profiling analysis, which can reveal the location and quantity of translating ribosomes on mRNAs, multiple aspects of protein translation were quantitatively analyzed in mouse embryonic stem cells and cortical neurons upon acute mTOR inhibition. Neurons displayed distinct patterns of ribosome occupancy for each codon and ribosome stalling during translation at specific positions of mRNAs. Importantly, the cytoskeletal regulator palladin was identified as a translational target protein of mTOR signaling in neurons. Palladin operates downstream of mTOR to modulate axon morphogenesis. This study identifies a novel mechanism of neuronal morphogenesis regulated by mTOR signaling through control of translation of the key protein palladin.


Assuntos
Axônios/fisiologia , Proteínas do Citoesqueleto/fisiologia , Morfogênese/genética , Morfogênese/fisiologia , Fosfoproteínas/fisiologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Animais , Células Cultivadas , Proteínas do Citoesqueleto/genética , Feminino , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fosfoproteínas/genética , Biossíntese de Proteínas , Edição de RNA , Ribossomos/química , Ribossomos/genética , Serina-Treonina Quinases TOR/genética , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo
16.
Genes Dev ; 25(24): 2659-73, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22135323

RESUMO

Transient receptor potential (TRP) channels have been implicated as sensors of diverse stimuli in mature neurons. However, developmental roles for TRP channels in the establishment of neuronal connectivity remain largely unexplored. Here, we identify an essential function for TRPC5, a member of the canonical TRP subfamily, in the regulation of dendrite patterning in the mammalian brain. Strikingly, TRPC5 knockout mice harbor long, highly branched granule neuron dendrites with impaired dendritic claw differentiation in the cerebellar cortex. In vivo RNAi analyses suggest that TRPC5 regulates dendrite morphogenesis in the cerebellar cortex in a cell-autonomous manner. Correlating with impaired dendrite patterning in the cerebellar cortex, behavioral analyses reveal that TRPC5 knockout mice have deficits in gait and motor coordination. Finally, we uncover the molecular basis of TRPC5's function in dendrite patterning. We identify the major protein kinase calcium/calmodulin-dependent kinase II ß (CaMKIIß) as a critical effector of TRPC5 function in neurons. Remarkably, TRPC5 forms a complex specifically with CaMKIIß, but not the closely related kinase CaMKIIα, and thereby induces the CaMKIIß-dependent phosphorylation of the ubiquitin ligase Cdc20-APC at the centrosome. Accordingly, centrosomal CaMKIIß signaling mediates the ability of TRPC5 to regulate dendrite morphogenesis in neurons. Our findings define a novel function for TRPC5 that couples calcium signaling to a ubiquitin ligase pathway at the centrosome and thereby orchestrates dendrite patterning and connectivity in the brain.


Assuntos
Sinalização do Cálcio/genética , Córtex Cerebelar/citologia , Córtex Cerebelar/crescimento & desenvolvimento , Dendritos/fisiologia , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Centrossomo/metabolismo , Técnicas de Inativação de Genes , Masculino , Camundongos , Ratos
17.
Genes Dev ; 24(8): 799-813, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20395366

RESUMO

Neuronal polarity is essential for normal brain development and function. However, cell-intrinsic mechanisms that govern the establishment of neuronal polarity remain to be identified. Here, we report that knockdown of endogenous FOXO proteins in hippocampal and cerebellar granule neurons, including in the rat cerebellar cortex in vivo, reveals a requirement for the FOXO transcription factors in the establishment of neuronal polarity. The FOXO transcription factors, including the brain-enriched protein FOXO6, play a critical role in axo-dendritic polarization of undifferentiated neurites, and hence in a switch from unpolarized to polarized neuronal morphology. We also identify the gene encoding the protein kinase Pak1, which acts locally in neuronal processes to induce polarity, as a critical direct target gene of the FOXO transcription factors. Knockdown of endogenous Pak1 phenocopies the effect of FOXO knockdown on neuronal polarity. Importantly, exogenous expression of Pak1 in the background of FOXO knockdown in both primary neurons and postnatal rat pups in vivo restores the polarized morphology of neurons. These findings define the FOXO proteins and Pak1 as components of a cell-intrinsic transcriptional pathway that orchestrates neuronal polarity, thus identifying a novel function for the FOXO transcription factors in a unique aspect of neural development.


Assuntos
Polaridade Celular/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/citologia , Neurônios/fisiologia , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Animais , Polaridade Celular/genética , Células Cultivadas , Fatores de Transcrição Forkhead/genética , Técnicas de Silenciamento de Genes , Hipocampo/fisiologia , Neurônios/metabolismo , Interferência de RNA , Ratos
18.
Neurobiol Dis ; 96: 227-235, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27633282

RESUMO

Intellectual disability encompasses a large set of neurodevelopmental disorders of cognition that are more common in males than females. Although mutations in over 100 X-linked genes associated to intellectual disability have been identified, only a few X-linked intellectual disability proteins have been intensively studied. Hence, the molecular mechanisms underlying the majority of X-linked intellectual disability disorders remain poorly understood. A substantial fraction of X-linked intellectual disability genes encode nuclear proteins, suggesting that elucidating their functions in the regulation of transcription may provide novel insights into the pathogenesis of intellectual disability. Recent studies have uncovered mechanisms by which mutations of the gene encoding plant homeodomain (PHD)-like finger protein 6 (PHF6) contribute to the pathogenesis of the X-linked intellectual disability disorder Börjeson-Forssman-Lehmann syndrome (BFLS). PHF6 plays a critical role in the migration of neurons in the mouse cerebral cortex in vivo, and patient-specific mutations disrupt the ability of PHF6 to promote neuronal migration. Interestingly, PHF6 physically associates with the PAF1 transcriptional elongation complex and thereby drives neuronal migration in the cerebral cortex. PHF6 also interacts with the NuRD chromatin remodeling complex and with the nucleolar transcriptional regulator UBF, though the biological role of these interactions remains to be characterized. In other studies, PHF6 mRNA has been identified as the target of the microRNA miR-128 in the cerebral cortex, providing new insights into regulation of PHF6 function in neuronal migration. Importantly, deregulation of PHF6 function in neuronal migration triggers the formation of white matter heterotopias that harbor neuronal hyperexcitability, which may be relevant to the pathogenesis of intellectual disability and seizures in BFLS. Collectively, these studies are beginning to provide key insights into the molecular pathogenesis of BFLS.


Assuntos
Proteínas de Transporte/genética , Córtex Cerebral/metabolismo , Epilepsia/genética , Epilepsia/patologia , Face/anormalidades , Dedos/anormalidades , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Hipogonadismo/genética , Hipogonadismo/patologia , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Obesidade/genética , Obesidade/patologia , Animais , Córtex Cerebral/patologia , Epilepsia/complicações , Face/patologia , Dedos/patologia , Transtornos do Crescimento/complicações , Humanos , Hipogonadismo/complicações , Deficiência Intelectual/etiologia , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/complicações , Mutação/genética , Obesidade/complicações , Proteínas Repressoras
19.
Development ; 140(23): 4657-71, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24255095

RESUMO

The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders.


Assuntos
Dendritos/metabolismo , Drosophila melanogaster/embriologia , Morfogênese/fisiologia , Neurogênese/fisiologia , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso/metabolismo , Transdução de Sinais , Transcrição Gênica
20.
EMBO Rep ; 15(3): 254-63, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24531721

RESUMO

Although neurons execute a cell intrinsic program of axonal growth during development, following the establishment of connections, the developmental growth capacity declines. Besides environmental challenges, this switch largely accounts for the failure of adult central nervous system (CNS) axons to regenerate. Here, we discuss the cell intrinsic control of axon regeneration, including not only the regulation of transcriptional and epigenetic mechanisms, but also the modulation of local protein translation, retrograde and anterograde axonal transport, and microtubule dynamics. We further explore the causes underlying the failure of CNS neurons to mount a vigorous regenerative response, and the paradigms demonstrating the activation of cell intrinsic axon growth programs. Finally, we present potential mechanisms to support axon regeneration, as these may represent future therapeutic approaches to promote recovery following CNS injury and disease.


Assuntos
Axônios/fisiologia , Regeneração Nervosa , Animais , Transporte Axonal , Axônios/metabolismo , Humanos , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA