Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Radiol ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789792

RESUMO

BACKGROUND: The aim of our current systematic dynamic phantom study was first, to optimize reconstruction parameters of coronary CTA (CCTA) acquired on photon counting CT (PCCT) for coronary artery calcium (CAC) scoring, and second, to assess the feasibility of calculating CAC scores from CCTA, in comparison to reference calcium scoring CT (CSCT) scans. METHODS: In this phantom study, an artificial coronary artery was translated at velocities corresponding to 0, < 60, and 60-75 beats per minute (bpm) within an anthropomorphic phantom. The density of calcifications was 100 (very low), 200 (low), 400 (medium), and 800 (high) mgHA/cm3, respectively. CCTA was reconstructed with the following parameters: virtual non-iodine (VNI), with and without iterative reconstruction (QIR level 2, QIR off, respectively); kernels Qr36 and Qr44f; slice thickness/increment 3.0/1.5 mm and 0.4/0.2 mm. The agreement in risk group classification between CACCCTA and CACCSCT scoring was measured using Cohen weighted linear κ with 95% CI. RESULTS: For CCTA reconstructed with 0.4 mm slice thickness, calcium detectability was perfect (100%). At < 60 bpm, CACCCTA of low, and medium density calcification was underestimated by 53%, and 15%, respectively. However, CACCCTA was not significantly different from CACCSCT of very low, and high-density calcifications. The best risk agreement was achieved when CCTA was reconstructed with QIR off, Qr44f, and 0.4 mm slice thickness (κ = 0.762, 95% CI 0.671-0.853). CONCLUSION: In this dynamic phantom study, the detection of calcifications with different densities was excellent with CCTA on PCCT using thin-slice VNI reconstruction. Agatston scores were underestimated compared to CSCT but agreement in risk classification was substantial. CLINICAL RELEVANCE STATEMENT: Photon counting CT may enable the implementation of coronary artery calcium scoring from coronary CTA in daily clinical practice. KEY POINTS: Photon-counting CTA allows for excellent detectability of low-density calcifications at all heart rates. Coronary artery calcium scoring from coronary CTA acquired on photon counting CT is feasible, although improvement is needed. Adoption of the standard acquisition and reconstruction protocol for calcium scoring is needed for improved quantification of coronary artery calcium to fully employ the potential of photon counting CT.

2.
Skeletal Radiol ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441616

RESUMO

In musculoskeletal imaging, CT is used in a wide range of indications, either alone or in a synergistic approach with MRI. While MRI is the preferred modality for the assessment of soft tissues and bone marrow, CT excels in the imaging of high-contrast structures, such as mineralized tissue. Additionally, the introduction of dual-energy CT in clinical practice two decades ago opened the door for spectral imaging applications. Recently, the advent of photon-counting detectors (PCDs) has further advanced the potential of CT, at least in theory. Compared to conventional energy-integrating detectors (EIDs), PCDs provide superior spatial resolution, reduced noise, and intrinsic spectral imaging capabilities. This review briefly describes the technical advantages of PCDs. For each technical feature, the corresponding applications in musculoskeletal imaging will be discussed, including high-spatial resolution imaging for the assessment of bone and crystal deposits, low-dose applications such as whole-body CT, as well as spectral imaging applications including the characterization of crystal deposits and imaging of metal hardware. Finally, we will highlight the potential of PCD-CT in emerging applications, underscoring the need for further preclinical and clinical validation to unleash its full clinical potential.

3.
Eur Radiol ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37940711

RESUMO

OBJECTIVES: To compare coronary artery calcification (CAC) scores measured on virtual non-contrast (VNC) and virtual non-iodine (VNI) reconstructions computed from coronary computed tomography angiography (CCTA) using photon-counting computed tomography (PCCT) to true non-contrast (TNC) images. METHODS: We included 88 patients (mean age = 59 years ± 13.5, 69% male) who underwent a TNC coronary calcium scan followed by CCTA on PCCT. VNC images were reconstructed in 87 patients and VNI in 88 patients by virtually removing iodine from the CCTA images. For all reconstructions, CAC scores were determined, and patients were classified into risk categories. The overall agreement of the reconstructions was analyzed by Bland-Altman plots and the level of matching classifications. RESULTS: The median CAC score on TNC was 27.8 [0-360.4] compared to 8.5 [0.2-101.6] (p < 0.001) on VNC and 72.2 [1.3-398.8] (p < 0.001) on VNI. Bland-Altman plots depicted a bias of 148.8 (ICC = 0.82, p < 0.001) and - 57.7 (ICC = 0.95, p < 0.001) for VNC and VNI, respectively. Of all patients with CACTNC = 0, VNC reconstructions scored 63% of the patients correctly, while VNI scored 54% correctly. Of the patients with CACTNC > 0, VNC and VNI reconstructions detected the presence of coronary calcium in 90% and 92% of the patients. CACVNC tended to underestimate CAC score, whereas CACVNI overestimated, especially in the lower risk categories. According to the risk categories, VNC misclassified 55% of the patients, while VNI misclassified only 32%. CONCLUSION: Compared to TNC images, VNC underestimated and VNI overestimated the actual CAC scores. VNI reconstructions quantify and classify coronary calcification scores more accurately than VNC reconstructions. CLINICAL RELEVANCE STATEMENT: Photon-counting CT enables spectral imaging, which might obviate the need for non-contrast enhanced coronary calcium scoring, but optimization is necessary for the clinical implementation of the algorithms. KEY POINTS: • Photon-counting computed tomography uses spectral information to virtually remove the signal of contrast agents from contrast-enhanced scans. • Virtual non-contrast reconstructions tend to underestimate coronary artery calcium scores compared to true non-contrast images, while virtual non-iodine reconstructions tend to overestimate the calcium scores. • Virtual non-iodine reconstructions might obviate the need for non-contrast enhanced calcium scoring, but optimization is necessary for the clinical implementation of the algorithms.

4.
Eur Radiol ; 33(7): 4668-4675, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36729174

RESUMO

PURPOSE: To systematically assess the radiation dose reduction potential of coronary artery calcium (CAC) assessments with photon-counting computed tomography (PCCT) by changing the tube potential for different patient sizes with a dynamic phantom. METHODS: A hollow artery, containing three calcifications of different densities, was translated at velocities corresponding to 0, < 60, 60-75, and > 75 beats per minute within an anthropomorphic phantom. Extension rings were used to simulate average- and large -sized patients. PCCT scans were made with the reference clinical protocol (tube potential of 120 kilovolt (kV)), and with 70, 90, Sn100, Sn140, and 140 kV at identical image quality levels. All acquisitions were reconstructed at a virtual monoenergetic energy level of 70 keV. For each calcification, Agatston scores and contrast-to-noise ratios (CNR) were determined, and compared to the reference with Wilcoxon signed-rank tests, with p < 0.05 indicating significant differences. RESULTS: A decrease in radiation dose (22%) was achieved at Sn100 kV for the average-sized phantom. For the large phantom, Sn100 and Sn140 kV resulted in a decrease in radiation doses of 19% and 3%, respectively. Irrespective of CAC density, Sn100 and 140 kVp did not result in significantly different CNR. Only at Sn100 kV were there no significant differences in Agatston scores for all CAC densities, heart rates, and phantom sizes. CONCLUSION: PCCT at tube voltage of 100 kV with added tin filtration and reconstructed at 70 keV enables a ≥ 19% dose reduction compared to 120 kV, independent of phantom size, CAC density, and heart rate. KEY POINTS: • Photon-counting CT allows for reduced radiation dose acquisitions (up to 19%) for coronary calcium assessment by reducing tube voltage while reconstructing at a normal monoE level of 70 keV. • Tube voltage reduction is possible for medium and large patient sizes, without affecting the Agatston score outcome.


Assuntos
Calcinose , Cálcio , Humanos , Vasos Coronários/diagnóstico por imagem , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas
5.
Pediatr Radiol ; 53(4): 649-659, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36307546

RESUMO

Imaging plays a pivotal role in the noninvasive assessment of cystic fibrosis (CF)-related lung damage, which remains the main cause of morbidity and mortality in children with CF. The development of new imaging techniques has significantly changed clinical practice, and advances in therapies have posed diagnostic and monitoring challenges. The authors summarise these challenges and offer new perspectives in the use of imaging for children with CF for both clinicians and radiologists. This article focuses on chest radiography and CT, which are the two main radiologic techniques used in most cystic fibrosis centres. Advantages and disadvantages of radiography and CT for imaging in CF are described, with attention to new developments in these techniques, such as the use of artificial intelligence (AI) image analysis strategies to improve the sensitivity of radiography and CT and the introduction of the photon-counting detector CT scanner to increase spatial resolution at no dose expense.


Assuntos
Fibrose Cística , Criança , Humanos , Fibrose Cística/diagnóstico por imagem , Inteligência Artificial , Pulmão , Tomografia Computadorizada por Raios X/métodos , Radiografia
6.
Eur Radiol ; 32(1): 442-447, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34327574

RESUMO

OBJECTIVE: To assess the influence of breathing state on the accuracy of a 3D camera for body contour detection and patient positioning in thoracic CT. MATERIALS AND METHODS: Patients who underwent CT of the thorax with both an inspiratory and expiratory scan were prospectively included for analysis of differences in the ideal table height at different breathing states. For a subgroup, an ideal table height suggestion based on 3D camera images at both breathing states was available to assess their influence on patient positioning accuracy. Ideal patient positioning was defined as the table height at which the scanner isocenter coincides with the patient's isocenter. RESULTS: The mean (SD) difference of the ideal table height between the inspiratory and the expiratory breathing state among the 64 included patients was 10.6 mm (4.5) (p < 0.05). The mean (SD) positioning accuracy, i.e., absolute deviation from the ideal table height, within the subgroup (n = 43) was 4.6 mm (7.0) for inspiratory scans and 7.1 mm (7.7) for expiratory scans (p < 0.05) when using corresponding 3D camera images. The mean (SD) accuracy was 14.7 mm (7.4) (p < 0.05) when using inspiratory camera images on expiratory scans; vice versa, the accuracy was 3.1 mm (9.5) (p < 0.05). CONCLUSION: A 3D camera allows for accurate and precise patient positioning if the camera image and the subsequent CT scan are acquired in the same breathing state. It is recommended to perform an expiratory planning image when acquiring a thoracic CT scan in both the inspiratory and expiratory breathing state. KEY POINTS: • A 3D camera for body contour detection allows for accurate and precise patient positioning if the camera image and the subsequent CT scan are acquired in the same breathing state. • It is recommended to perform an expiratory planning image when acquiring a thoracic CT scan in both the inspiratory and expiratory breathing state.


Assuntos
Tórax , Tomografia Computadorizada por Raios X , Humanos , Imageamento Tridimensional , Posicionamento do Paciente , Estudos Retrospectivos
7.
Eur Radiol ; 32(8): 5201-5209, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35230517

RESUMO

OBJECTIVES: The aim of this study was to determine mono-energetic (monoE) level-specific photon-counting CT (PCCT) Agatston thresholds, to yield monoE level independent Agatston scores validated with a dynamic cardiac phantom. Also, we examined the potential of dose reduction for PCCT coronary artery calcium (CAC) studies, when reconstructed at low monoE levels. METHODS: Theoretical CAC monoE thresholds were calculated with data from the National Institute of Standards and Technology (NIST) database. Artificial CAC with three densities were moved in an anthropomorphic thorax phantom at 0 and 60-75 bpm, and scanned at full and 50% dose on a first-generation dual-source PCCT. For all densities, Agatston scores and maximum CT numbers were determined. Agatston scores were compared with the reference at full dose and 70 keV monoE level; deviations (95% confidence interval) < 10% were deemed to be clinically not-relevant. RESULTS: Averaged over all monoE levels, measured CT numbers deviated from theoretical CT numbers by 6%, 13%, and - 4% for low-, medium-, and high-density CAC, respectively. At 50% reduced dose and 60-75 bpm, Agatston score deviations were non-relevant for 60 to 100 keV and 60 to 120 keV for medium- and high-density CAC, respectively. CONCLUSION: MonoE level-specific Agatston score thresholds resulted in similar scores as in standard reconstructions at 70 keV. PCCT allows for a potential dose reduction of 50% for CAC scoring using low monoE reconstructions for medium- and high-density CAC. KEY POINTS: • Mono-energy level-specific Agatston thresholds allow for reproducible coronary artery calcium quantification on mono-energetic images. • Increased calcium contrast-to-noise ratio at reduced mono-energy levels allows for coronary artery calcium quantification at 50% reduced radiation dose for medium- and high-density calcifications.


Assuntos
Cálcio , Doença da Artéria Coronariana , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Redução da Medicação , Humanos , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos
8.
Eur Radiol ; 31(1): 131-138, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32749591

RESUMO

OBJECTIVE: To assess the accuracy of a 3D camera for body contour detection in pediatric patient positioning in CT compared with routine manual positioning by radiographers. METHODS AND MATERIALS: One hundred and ninety-one patients, with and without fixation aid, which underwent CT of the head, thorax, and/or abdomen on a scanner with manual table height selection and with table height suggestion by a 3D camera were retrospectively included. The ideal table height was defined as the position at which the scanner isocenter coincides with the patient's isocenter. Table heights suggested by the camera and selected by the radiographer were compared with the ideal height. RESULTS: For pediatric patients without fixation aid like a baby cradle or vacuum cushion and positioned by radiographers, the median (interquartile range) absolute table height deviation in mm was 10.2 (16.8) for abdomen, 16.4 (16.6) for head, 4.1 (5.1) for thorax-abdomen, and 9.7 (9.7) for thorax CT scans. The deviation was less for the 3D camera: 3.1 (4.7) for abdomen, 3.9 (6.3) for head, 2.2 (4.3) for thorax-abdomen, and 4.8 (6.7) for thorax CT scans (p < 0.05 for all body parts combined). CONCLUSION: A 3D camera for body contour detection allows for automated and more accurate pediatric patient positioning than manual positioning done by radiographers, resulting in overall significantly smaller deviations from the ideal table height. The 3D camera may be also useful in the positioning of patients with fixation aid; however, evaluation of possible improvements in positioning accuracy was limited by the small sample size. KEY POINTS: • A 3D camera for body contour detection allows for automated and accurate pediatric patient positioning in CT. • A 3D camera outperformed radiographers in positioning pediatric patients without a fixation aid in CT. • Positioning of pediatric patients with fixation aid was feasible using the 3D camera, but no definite conclusions were drawn regarding the positioning accuracy due to the small sample size.


Assuntos
Posicionamento do Paciente , Tórax , Abdome , Criança , Humanos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
9.
Eur Radiol ; 31(12): 9211-9220, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34050386

RESUMO

OBJECTIVES: The purpose of this study was twofold. First, the influence of a novel calcium-aware (Ca-aware) computed tomography (CT) reconstruction technique on coronary artery calcium (CAC) scores surrounded by a variety of tissues was assessed. Second, the performance of the Ca-aware reconstruction technique on moving CAC was evaluated with a dynamic phantom. METHODS: An artificial coronary artery, containing two CAC of equal size and different densities (196 ± 3, 380 ± 2 mg hydroxyapatite cm-3), was moved in the center compartment of an anthropomorphic thorax phantom at different heart rates. The center compartment was filled with mixtures, which resembled fat, water, and soft tissue equivalent CT numbers. Raw data was acquired with a routine clinical CAC protocol, at 120 peak kilovolt (kVp). Subsequently, reduced tube voltage (100 kVp) and tin-filtration (150Sn kVp) acquisitions were performed. Raw data was reconstructed with a standard and a novel Ca-aware reconstruction technique. Agatston scores of all reconstructions were compared with the reference (120 kVp) and standard reconstruction technique, with relevant deviations defined as > 10%. RESULTS: For all heart rates, Agatston scores for CAC submerged in fat were comparable to the reference, for the reduced-kVp acquisition with Ca-aware reconstruction kernel. For water and soft tissue, medium-density Agatston scores were again comparable to the reference for all heart rates. Low-density Agatston scores showed relevant deviations, up to 15% and 23% for water and soft tissue, respectively. CONCLUSION: CT CAC scoring with varying surrounding materials and heart rates is feasible at patient-specific tube voltages with the novel Ca-aware reconstruction technique. KEY POINTS: • A dedicated calcium-aware reconstruction kernel results in similar Agatston scores for CAC surrounded by fatty materials regardless of CAC density and heart rate. • Application of a dedicated calcium-aware reconstruction kernel allows for radiation dose reduction. • Mass scores determined with CT underestimated physical mass.


Assuntos
Cálcio , Doença da Artéria Coronariana , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Frequência Cardíaca , Humanos , Imagens de Fantasmas , Doses de Radiação , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
10.
Eur Radiol ; 30(6): 3346-3355, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32072259

RESUMO

OBJECTIVE: To assess the dose reduction potential of a calcium-aware reconstruction technique, which aims at tube voltage-independent computed tomography (CT) numbers for calcium. METHODS AND MATERIALS: A cardiothoracic phantom, mimicking three different patient sizes, was scanned with two calcium inserts (named D100 and CCI), containing calcifications varying in size and density. Tube voltage was varied both manually (range 70-150 and Sn100 kVp) and automatically. Tube current was automatically adapted to maintain reference image quality defined at 120 kVp. Data was reconstructed with the standard reconstruction technique (kernel Qr36) and the calcium-aware reconstruction technique (kernel Sa36). We assessed the radiation dose reduction potential (volumetric CT dose index values (CTDIvol)), noise (standard deviation (SD)), mean CT number (HU) of each calcification, and Agatston scores for varying kVp. Results were compared with the reference acquired at 120 kVp and reconstructed with Qr36. RESULTS: Automatic selection of the optimal tube voltage resulted in a CTDIvol reduction of 22%, 15%, and 12% compared with the reference for the small, medium, and large phantom, respectively. CT numbers differed up to 64% for the standard reconstruction and 11% for the calcium-aware reconstruction. Similarly, Agatston scores deviated up to 40% and 8% for the standard and calcium-aware reconstruction technique, respectively. CONCLUSION: CT numbers remained consistent with comparable calcium scores when the calcium-aware image reconstruction technique was applied with varying tube voltage. Less consistency was observed in small calcifications with low density. Automatic reduction of tube voltage resulted in a dose reduction of up to 22%. KEY POINTS: • The calcium-aware image reconstruction technique allows for consistent CT numbers when varying the tube voltage. • Automatic reduction of tube voltage results in a reduced radiation exposure of up to 22%. • This study stresses the known limitations of the current Agatston score technique.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Calcificação Vascular/diagnóstico por imagem , Algoritmos , Calcinose/diagnóstico por imagem , Cálcio , Tomografia Computadorizada de Feixe Cônico , Vasos Coronários/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Exposição à Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
11.
Eur Radiol ; 29(4): 2079-2088, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30306328

RESUMO

OBJECTIVE: To assess the accuracy of a 3D camera for body contour detection and patient positioning in CT compared to routine manual positioning by radiographers. METHODS AND MATERIALS: Four hundred twenty-three patients that underwent CT of the head, thorax, and/or abdomen on a scanner with manual table height selection and 254 patients on a scanner with table height suggestion by a 3D camera were retrospectively included. Within the camera group, table height suggestion was based on infrared body contour detection and fitting of a scalable patient model to the 3D data. Proper positioning was defined as the ideal table height at which the scanner isocenter coincides with the patient's isocenter. Patient isocenter was computed by automatic skin contour extraction in each axial image and averaged over all images. Table heights suggested by the camera and selected by the radiographer were compared with the ideal height. RESULTS: Median (interquartile range) absolute table height deviation in millimeter was 12.0 (21.6) for abdomen, 12.2 (12.0) for head, 13.4 (17.6) for thorax-abdomen, and 14.7 (17.3) for thorax CT scans positioned by radiographers. The deviation was significantly less (p < 0.01) for the 3D camera at 6.3 (6.9) for abdomen, 9.5 (6.8) for head, 6.0 (6.1) for thorax-abdomen, and 5.4 (6.4) mm for thorax. CONCLUSION: A 3D camera for body contour detection allows for accurate patient positioning, thereby outperforming manual positioning done by radiographers, resulting in significantly smaller deviations from the ideal table height. However, radiographers remain indispensable when the system fails or in challenging cases. KEY POINTS: • A 3D camera for body contour detection allows for accurate patient positioning. • A 3D camera outperformed radiographers in patient positioning in CT. • Deviation from ideal table height was more extreme for patients positioned by radiographers for all body parts.


Assuntos
Abdome/diagnóstico por imagem , Cabeça/diagnóstico por imagem , Imageamento Tridimensional/instrumentação , Posicionamento do Paciente/métodos , Tórax/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Imagem Corporal Total/métodos , Feminino , Humanos , Masculino , Estudos Retrospectivos
12.
Radiology ; 286(1): 71-80, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28809582

RESUMO

Purpose To show that equal coronary lumen opacification can be achieved with iso- and low-osmolar contrast media when it is injected at the same iodine delivery rate with contemporary cardiac computed tomographic (CT) protocols and to investigate the cardiovascular effect of iso-osmolar contrast media and the image quality achieved. Materials and Methods Institutional review board approval and written informed consent were obtained for the Effect of Iso-osmolar Contrast Medium on Coronary Opacification and Heart Rhythm in Coronary CT Angiography, or IsoCOR, trial. Between November 2015 and August 2016, 306 patients (167 [55%] women) at least 18 years old (weight range, 50-125 kg), were prospectively randomized to receive iso-osmolar iodixanol 270 or low-osmolar iopromide 300 contrast media. All coronary segments were assessed for intraluminal opacification and image quality and were compared by using the Student t test. Heart rate, arrhythmia, patient discomfort, and adverse events also were monitored. Results Mean measured coronary attenuation values ± standard deviation were comparable between the iodixanol 270 and iopromide 300 contrast media groups (469 HU ± 167 vs 447 HU ± 166, respectively [P = .241]; 95% confidence interval: -15.1, 60.0), including those from subanalyses. Adjusted for the lower iodine concentration, the mean iodixanol 270 bolus was larger compared with that of iopromide 300 (76.8 mL ± 11.6 vs 69.7 mL ± 10.8, respectively; P < .001). The higher injection rate was associated with higher pressure (777 kPa ± 308 vs 630 kPa ± 252, respectively; P < .001). Although in the iodixanol 270 group patients experienced less heat discomfort (72% vs 86%, respectively; P < .001), no differences in heart rate or rhythm were observed. Conclusion If injected at comparable iodine delivery rates, the iso-osmolar contrast medium iodixanol 270 is not inferior to low-osmolar contrast medium iopromide 300 for assessment of coronary opacification. Iodixanol 270 was associated with less heat discomfort, but did not affect heart rate differently compared with iopromide 300. © RSNA, 2017 Online supplemental material is available for this article.


Assuntos
Angiografia por Tomografia Computadorizada , Meios de Contraste/uso terapêutico , Angiografia Coronária , Iohexol/análogos & derivados , Ácidos Tri-Iodobenzoicos/uso terapêutico , Adulto , Pressão Sanguínea/efeitos dos fármacos , Angiografia por Tomografia Computadorizada/métodos , Angiografia por Tomografia Computadorizada/estatística & dados numéricos , Meios de Contraste/efeitos adversos , Angiografia Coronária/métodos , Angiografia Coronária/estatística & dados numéricos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Iohexol/efeitos adversos , Iohexol/uso terapêutico , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Ácidos Tri-Iodobenzoicos/efeitos adversos
13.
Eur Radiol ; 27(9): 3618-3624, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28127643

RESUMO

OBJECTIVES: The purpose of this study was to assess the efficacy of the renewed dynamic collimator in a third-generation dual source CT (DSCT) scanner and to determine the improvements over the second-generation scanner. METHODS: Collimator efficacy is defined as the percentage overranging dose in terms of dose-length product (DLP) that is blocked by the dynamic collimator relative to the total overranging dose in case of a static collimator. Efficacy was assessed at various pitch values and different scan lengths. The number of additional rotations due to overranging and effective scan length were calculated on the basis of reported scanning parameters. On the basis of these values, the efficacy of the collimator was calculated. RESULTS: The second-generation scanner showed decreased performance of the dynamic collimator at increasing pitch. Efficacy dropped to 10% at the highest pitch. For the third-generation scanner the efficacy remained above 50% at higher pitch. Noise was for some pitch values slightly higher at the edge of the imaged volume, indicating a reduced scan range to reduce the overranging dose. CONCLUSIONS: The improved dynamic collimator in the third-generation scanner blocks the overranging dose for more than 50% and is more capable of shielding radiation dose, especially in high pitch scan modes. KEY POINTS: • Overranging dose is to a large extent blocked by the dynamic collimator • Efficacy is strongly improved within the third-generation DSCT scanner • Reducing the number of additional rotations can reduce overranging with increased noise.


Assuntos
Doses de Radiação , Tomografia Computadorizada Espiral/instrumentação , Tomografia Computadorizada Espiral/métodos , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Proteção Radiológica/métodos
14.
Eur J Radiol ; 173: 111383, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377892

RESUMO

PURPOSE: Scaphoid fractures in patients and assessment of healing using PCD-CT have, as far as we know, not yet been studied. Therefore, the aim was to compare photon counting detector CT (PCD-CT) with energy integrating detector CT (EID-CT) in terms of fracture visibility and evaluation of fracture healing. METHOD: Eight patients with scaphoid fracture were examined with EID-CT and PCD-CT within the first week post-trauma, and with additional scans at 4, 6 and 8 weeks. Our clinical protocol for wrist examination with EID-CT was used (CTDIvol 3.1 ± 0.1 mGy, UHR kernel Ur77). For PCD-CT matched radiation dose, reconstruction kernel Br89. Quantitative analyses of noise, CNR, trabecular and cortical sharpness, and bone volume fraction were conducted. Five radiologists evaluated the images for fracture visibility, fracture gap consolidation and image quality, and rated their confidence in the diagnosis. RESULTS: The trabecular and cortical sharpness were superior in images obtained with PCD-CT compared with EID-CT. A successive reduction in trabecular bone volume fraction during the immobilized periods was found with both systems. Despite higher noise and lower CNR with PCD-CT, radiologists rated the image quality of PCD-CT as superior. The visibility of the fracture line within 1-week post-trauma was rated higher with PCD-CT as was diagnostic confidence, but the subsequent assessments of fracture gap consolidation during healing process and the confidence in diagnosis were found equivalent between both systems. CONCLUSION: PCD-CT offers superior visibility of bone microstructure compared with EID-CT. The evaluation of fracture healing and confidence in diagnosis were rated equally with both systems, but the radiologists found primary fracture visibility and overall image quality superior with PCD-CT.


Assuntos
Fraturas Ósseas , Osso Escafoide , Humanos , Fraturas Ósseas/diagnóstico por imagem , Seguimentos , Osso Escafoide/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Fótons , Imagens de Fantasmas
15.
Med Phys ; 51(4): 2924-2932, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358113

RESUMO

BACKGROUND: Photon-counting CT (PCCT) is the next-generation CT scanner that enables improved spatial resolution and spectral imaging. For full spectral processing, higher tube voltages compared to conventional CT are necessary to achieve the required spectral separation. This generated interest in the potential influence of thin slice high tube voltage PCCT on overall image quality and consequently on radiation dose. PURPOSE: This study first evaluated tube voltages and radiation doses applied in patients who underwent coronary CT angiography with PCCT and energy-integrating detector CT (EID-CT). Next, image quality of PCCT and EID-CT was objectively evaluated in a phantom study simulating different patient sizes at these tube voltages and radiation doses. METHODS: We conducted a retrospective analysis of clinical doses of patients scanned on a conventional and PCCT system. Average patient water equivalent diameters for different tube voltages were extracted from the dose reports for both EID-CT and PCCT. A conical phantom made of polyethylene with multiple diameters (26/31/36 cm) representing different patient sizes and containing an iodine insert was scanned with a EID-CT scanner using tube voltages and phantom diameters that match the patient scans and characteristics. Next, phantom scans were made with PCCT at a fixed tube voltage of 120 kV and with CTDIVOL values and phantom diameters identical to the EID-CT scans. Clinical image reconstructions at 0.6 mm slice thickness for conventional CT were compared to PCCT images with 0.4 mm slice thickness. Image quality was quantified using the detectability index (d'), which estimated the visibility of a 3 mm diameter contrast-enhanced coronary artery by considering noise, contrast, resolution, and human visual perception. Alongside d', noise, contrast and resolution were also individually assessed. In addition, the influence of various kernels (Bv40/Bv44/Bv48/Bv56), quantum iterative reconstruction strengths (QIR, 3/4) and monoenergetic levels (40/45/50/55 keV) for PCCT on d' was investigated. RESULTS: In this study, 143 patients were included: 47 were scanned on PCCT (120 kV) and the remaining on EID-CT (74 small-sized at 70 kV, 18 medium-sized at 80 kV and four large-sized at 90 kV). EID-CT showed 7%-17% higher d' than PCCT with Bv40 kernel and strength four for small/medium patients. Lower monoenergetic images (40 keV) helped mitigate the difference to 1%-6%. For large patients, PCCT's detectability was up to 31% higher than EID-CT. PCCT has thinner slices but similar noise levels for similar reconstruction parameters. The noise increased with lower keV levels in PCCT (≈30% increase), but higher QIR strengths reduced noise. PCCT's iodine contrast was stable across patient sizes, while EID-CT had 33% less contrast in large patients than in small-sized patients. CONCLUSION: At 120 kV, thin slice PCCT enables CCTA in phantom scans representing large patients without raising radiation dose or affecting vessel detectability. However, higher doses are needed for small and medium-sized patients to obtain a similar image quality as in EID-CT. The alternative of using lower mono-energetic levels requires further evaluation in clinical practice.


Assuntos
Iodo , Tomografia Computadorizada por Raios X , Humanos , Angiografia Coronária , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Doses de Radiação , Fótons
16.
Eur J Radiol ; 171: 111282, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190778

RESUMO

PURPOSE: The study is intended to assess the image quality of ultra-high resolution (UHR) coronary computed tomography angiography (CCTA) performed on dual source photon-counting detector CT (PCD-CT). METHOD: Consecutive patients, who underwent clinically indicated CCTA on PCD-CT (UHR 120x 0.2 mm collimation), were included. CCTA images were reconstructed at 0.2 mm slice thickness with Bv40, Bv44, Bv48 and Bv56 kernels and quantum iterative reconstruction level 4. Contrast-to-noise (CNR) and signal-to-noise ratios (SNR) were quantified from contrast-enhanced blood and subcutaneous adipose tissue. All reconstructions were scored per coronary segment (18-segment model) for presence, image quality, motion artefacts, stack artefacts, plaque presence and composition, and stenosis degree. Image quality was scored by two independent observers. RESULTS: Sixty patients were included (median age 62 [25th - 75th percentile: 53-67] years, 45% male, median calcium score 62 [0-217]). The mean heart rate during scanning was 71 ± 11 bpm. Median CTDIvol was 19 [16-22]mGy and median DLP 243 [198-327]mGy.cm. The SNR was 9.3 ± 2.3 and the CNR was 11.7 ± 2.6. Of the potential 1080 coronary segments (60 patients x 18 segments), 255/256 (reader1/reader2) segments could not be assessed for being absent or non-evaluable due to size. Both readers scored 85% of the segments as excellent or very good (Intraclass Correlation Coefficient: 0.88 (95% CI: 0.87-0.90). Motion artefacts were present in 45(5%) segments, stack artefacts in 60(7%) segments and metal artefacts in 9(1%) segments. CONCLUSION: UHR dual-source PCD-CT CCTA provides excellent or very good image quality in 85% of coronary segments at relatively high heart rates at moderate radiation dose with only limited stack artefacts.


Assuntos
Vasos Coronários , Tomografia Computadorizada por Raios X , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Angiografia Coronária/métodos , Vasos Coronários/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Angiografia por Tomografia Computadorizada/métodos , Coração , Imagens de Fantasmas
17.
Eur Radiol Exp ; 7(1): 19, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121937

RESUMO

BACKGROUND: Successful osseointegration of joint replacement implants is required for long-term implant survival. Accurate assessment of osseointegration could enable clinical discrimination of failed implants from other sources of pain avoiding unnecessary surgeries. Photon-counting detector computed tomography (PCD-CT) provides improvements in image resolution compared to conventional energy-integrating detector CT (EID-CT), possibly allowing better visualization of bone-implant-interfaces and osseointegration. The aim of this study was to assess the quality of visualization of bone-implant-interfaces and osseointegration in acetabular cup implants, using PCD-CT compared with EID-CT. METHODS: Two acetabular implants (one cemented, one uncemented) retrieved during revision surgery were scanned using PCD-CT and EID-CT at equal radiation dose. Images were reconstructed using different reconstruction kernels and iterative strengths. Delineation of the bone-implant and bone-cement-interface as an indicator of osseointegration was scored subjectively for image quality by four radiologists on a Likert scale and assessed quantitatively. RESULTS: Delineation of bone-implant and bone-cement-interfaces was better with PCD-CT compared with EID-CT (p ≤ 0.030). The highest ratings were given for PCD-CT at sharper kernels for the cemented cup (PCD-CT, median 5, interquartile range 4.25-5.00 versus EID-CT, 3, 2.00-3.75, p < 0.001) and the uncemented cup (5, 4.00-5.00 versus 2, 2-2, respectively, p < 0.001). The bone-implant-interface was 35-42% sharper and the bone-cement-interface was 28-43% sharper with PCD-CT compared with EID-CT, depending on the reconstruction kernel. CONCLUSIONS: PCD-CT might enable a more accurate assessment of osseointegration of orthopedic joint replacement implants. KEY POINTS: • The bone-implant interface ex vivo showed superior visualization using photon-counting detector computed tomography (PCD-CT) compared to energy-integrating detector computed tomography. • Harder reconstruction kernels in PCD-CT provide sharper images with lower noise levels. • These improvements in imaging might make it possible to visualize osseointegration in vivo.


Assuntos
Interface Osso-Implante , Osseointegração , Interface Osso-Implante/diagnóstico por imagem , Fótons , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos
18.
Eur J Radiol ; 159: 110662, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565594

RESUMO

PURPOSE: To quantitatively and qualitatively assess the visibility of bone structures in the wrist on photon-counting detector computed tomography (PCD-CT) images compared to state-of-the-art energy-integrating detector CT (EID-CT). METHOD: Four human cadaveric wrist specimens were scanned with EID-CT and PCD-CT at identical CTDIvol of 12.2 mGy and with 6.1 mGy (half dose PCD-CT). Axial images were reconstructed using the thinnest possible slice thickness, i.e. 0.4 mm on EID-CT and 0.2 mm on PCD-CT, with the largest image matrix size possible using reconstruction kernels optimized for bone (EID-CT: Ur68, PCD-CT: Br92). Quantitative evaluation was performed to determine contrast-noise ratio (CNR) of bone/ fat, cortical and trabecular sharpness. An observer study using visual grading characteristics (VGC) analysis was performed by six observers to assess the visibility of nutrient canals, trabecular architecture, cortical bone and the general image quality. RESULTS: At equal dose, images obtained with PCD-CT had 39 ± 6 % lower CNR (p = 0.001), 71 ± 57 % higher trabecular sharpness in the radius (p = 0.02) and 42 ± 8 % (p < 0.05) sharper cortical edges than those obtained with EID-CT. This was confirmed by VGC analysis showing a superior visibility of nutrient canals, trabeculae and cortical bone area under the curve (AUC) > 0.89) for PCD-CT, even at half dose. CONCLUSIONS: Despite a lower CNR and increased noise, the trabecular and cortical sharpness were twofold higher with PCD-CT. Visual grading analysis demonstrated superior visibility of cortical bone, trabeculae, nutrient canals and an overall improved image quality with PCD-CT over EID-CT. At half dose, PCD-CT also yielded superior image quality, both in quantitative measures and as evaluated by radiologists.


Assuntos
Fótons , Punho , Humanos , Punho/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Osso e Ossos/diagnóstico por imagem , Doses de Radiação , Imagens de Fantasmas
19.
Eur J Radiol ; 163: 110829, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37080060

RESUMO

Photon-counting computed tomography (PCCT) is a new technology that enables higher spatial resolution compared to conventional CT techniques, energy resolved imaging and spectral post-processing. This leads to improved contrast-to-noise ratio, artifact and potential dose reduction as well as elimination of electronic noise. Since the introduction of clinical PCCT in 2021, a shift has been observed from solely pre-clinical studies to clinical research (i.e. use of PCCT imaging in humans). This review article is focused on the initial clinical results of PCCT by explaining the current PCCT systems, the applications themselves and, the challenges of PCCT.


Assuntos
Tomografia Computadorizada por Raios X , Humanos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos
20.
Diagnostics (Basel) ; 12(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35741277

RESUMO

To evaluate whether the contrast-to-noise ratio (CNR) of an iodinated contrast agent in virtual monoenergetic images (VMI) from the first clinical photon-counting detector (PCD) CT scanner is superior to VMI CNR from a dual-source dual-energy CT scanner with energy-integrating detectors (EID), two anthropomorphic phantoms in three different sizes (thorax and abdomen, QRM GmbH), in combination with a custom-built insert containing cavities filled with water, and water with 15 mg iodine/mL, were scanned on an EID-based scanner (Siemens SOMATOM Force) and on a PCD-based scanner (Siemens, NAEOTOM Alpha). VMI (range 40−100 keV) were reconstructed without an iterative reconstruction (IR) technique and with an IR strength of 60% for the EID technique (ADMIRE) and closest matching IR strengths of 50% and 75% for the PCD technique (QIR). CNR was defined as the difference in mean CT numbers of water, and water with iodine, divided by the root mean square value of the measured noise in water, and water with iodine. A two-sample t-test was performed to evaluate differences in CNR between images. A p-value < 0.05 was considered statistically significant. For VMI without IR and below 60 keV, the CNR of the PCD-based images at 120 and 90 kVp was up to 55% and 75% higher than the CNR of the EID-based images, respectively (p < 0.05). For VMI above 60 keV, CNRs of PCD-based images at both 120 and 90 kVp were up to 20% lower than the CNRs of EID-based images. Similar or improved performance of PCD-based images in comparison with EID-based images were observed for VMIs reconstructed with IR techniques. In conclusion, with PCD-CT, iodine CNR on low energy VMI (<60 keV) is better than with EID-CT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA