Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120522, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493645

RESUMO

In the context of a circular bio-based economy, more public attention has been paid to the environmental sustainability of biodegradable bio-based plastics, particularly plastics produced using emerging biotechnologies, e.g. poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV. However, this has not been thoroughly investigated in the literature. Therefore, this study aimed to address three aspects regarding the environmental impact of PHBV-based plastic: (i) the potential environmental benefits of scaling up pellet production from pilot to industrial scale and the environmental hotspots at each scale, (ii) the most favourable end-of-life (EOL) scenario for PHBV, and (iii) the environmental performance of PHBV compared to benchmark materials considering both the pellet production and EOL stages. Life cycle assessment (LCA) was implemented using Cumulative Exergy Extraction from the Natural Environment (CEENE) and Environmental Footprint (EF) methods. The results show that, firstly, when upscaling the PHBV pellet production from pilot to industrial scale, a significant environmental benefit can be achieved by reducing electricity and nutrient usage, together with the implementation of better practices such as recycling effluent for diluting feedstock. Moreover, from the circularity perspective, mechanical recycling might be the most favourable EOL scenario for short-life PHBV-based products, using the carbon neutrality approach, as the material remains recycled and hence environmental credits are achieved by substituting recyclates for virgin raw materials. Lastly, PHBV can be environmentally beneficial equal to or even to some extent greater than common bio- and fossil-based plastics produced with well-established technologies. Besides methodological choices, feedstock source and technology specifications (e.g. pure or mixed microbial cultures) were also identified as significant factors contributing to the variations in LCA of (bio)plastics; therefore, transparency in reporting these factors, along with consistency in implementing the methodologies, is crucial for conducting a meaningful comparative LCA.


Assuntos
Hidroxibutiratos , Ácidos Pentanoicos , Poliésteres , Poli-Hidroxibutiratos , Biotecnologia
2.
J Environ Manage ; 224: 202-214, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30053732

RESUMO

The rising demand for feed and food has put an increasing pressure on agriculture, with agricultural intensification as a direct response. Notwithstanding the higher crop productivity, intensive agriculture management entails many adverse environmental impacts. Worldwide, soil organic carbon (SOC) decline is hereby considered as a main danger which affects soil fertility and productivity. The life cycle perspective helps to get a holistic overview when evaluating the environmental sustainability of agricultural systems, though the impact of farm management on soil quality aspects is often not integrated. In this paper, we introduce an indicator called Agricultural Biomass Productivity Benefit of SOC management (ABB_SOC), which, relying on natural resource consumption, enables to estimate the net effect of the efforts made to attain a better soil quality. Hereby the focus is put on SOC. First, we introduce a framework to describe the SOC trend due to farm management decisions. The extent to which remediation measures are required are used as a measure for the induced SOC losses. Next, ABB_SOC values are calculated as the balance between the natural resource consumption of the inputs (including remediation efforts) and the desired output of arable crop production systems. The models RothC and EU-Rotate_N are used to simulate the SOC evolution due to farm management and the response of the biomass productivity, respectively. The developed indicator is applied on several rotation systems in Flanders, comparing different remediation strategies. The indicator could be used as a base for a method to account for soil quality in life cycle analysis.


Assuntos
Carbono/análise , Produtos Agrícolas , Recursos Naturais , Agricultura , Biomassa , Solo/química
3.
Sci Total Environ ; 893: 164780, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37302605

RESUMO

The growing production of pharmaceuticals and nutraceuticals, e.g., methylcobalamin supplements, improves the health of people. This study assesses the environmental footprint of chewable methylcobalamin supplements in four packaging types: blister packs or bottles made of HDPE, PET, or glass. A cradle-to-grave life cycle assessment is conducted to evaluate the supply to Belgian consumers of the recommended daily dose of methylcobalamin supplementation (1.2 mg) in case of deficiency. The impact of methylcobalamin manufacturing in major producing countries (China as baseline and France) is analyzed based on detailed synthesis modeling of data points coming from patents. The overall carbon footprint (CF) is dominated by the transport of consumers to the pharmacy and methylcobalamin powder manufacturing in China (while its mass share per supplement is only 1 %). The impact is the lowest for supplements in HDPE bottles (6.3 g CO2 eq) and 1 %, 8 %, and 35 % higher for those in PET bottles, glass bottles, and blister packs, respectively. Tablets in blister packs have for other investigated impact categories (fossil resource footprint (FRF); acidification; eutrophication: freshwater, marine, and terrestrial; freshwater ecotoxicity; land use; and water use) the highest footprint and those in HDPE and PET bottles for most the lowest. The CF of methylcobalamin powder manufacturing in France is 22 % lower than in China (2.7 g CO2 eq), while the FRF is similar in both locations (26-27 kJ). The FRF and the difference in the CF are chiefly due to energy use and solvent production emissions. Similar trends as the CF are found for other investigated impact categories. Valuable conclusions are drawn for environmental studies on pharmaceuticals and nutraceuticals: (i) including accurate data on consumer transport, (ii) using more environmentally-friendly active ingredients, (iii) choosing appropriate packaging types considering multiple aspects: convenience, environmental footprint, etc., and (iv) providing a holistic picture through assessing various impact categories.


Assuntos
Dióxido de Carbono , Polietileno , Humanos , Animais , Pós , Pegada de Carbono , Suplementos Nutricionais , Estágios do Ciclo de Vida
4.
Sci Total Environ ; 894: 164781, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37321496

RESUMO

Packaging can play a substantial role in moving towards more sustainable food systems by affecting the amount of food loss and waste. However, the use of plastic packaging gives rise to environmental concerns, such as high energy and fossil resource use, and waste management issues such as marine litter. Alternative biobased biodegradable materials, such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) could address some of these issues. For a careful comparison in terms of environmental sustainability between fossil-based, non-biodegradable and alternative plastic food packaging, not only production but also food preservation and end-of-life (EoL) fate must be considered. Life cycle assessment (LCA) can be used to evaluate the environmental performance, but the environmental burden of plastics released into the natural environment is not yet embedded in classical LCA. Therefore, a new indicator is being developed that accounts for the effect of plastic litter on marine ecosystems, one of the main burdens of plastic's EoL fate: lifetime costs on marine ecosystem services. This indicator enables a quantitative assessment and thus addresses a major criticism of plastic packaging LCA. The comprehensive analysis is performed on the case of falafel packaged in PHBV and conventional polypropylene (PP) packaging. Considering the impact per kilogram of packaged falafel consumed, food ingredients make the largest contribution. The LCA results indicate a clear preference for the use of PP trays, both in terms of (1) impact of packaging production and dedicated EoL treatment and (2) packaging-related impacts. This is mainly due to the higher mass and volume of the alternative tray. Nevertheless, since PHBV has limited persistence in the environment compared to PP packaging, the lifetime costs for marine ES are about seven times lower, and this despite its higher mass. Although further refinements are needed, the additional indicator allows for a more balanced evaluation of plastic packaging.


Assuntos
Ecossistema , Plásticos , Animais , Embalagem de Alimentos , Polipropilenos , Poliésteres , Estágios do Ciclo de Vida
5.
Sci Total Environ ; 808: 152125, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34871681

RESUMO

Nowadays, a variety of methodologies are available to assess local, regional and global impacts of human activities on ecosystems, which include Life Cycle Assessment (LCA), Environmental Risk Assessment (ERA) and Ecosystem Services Assessment (ESA). However, none can individually assess both the positive and negative impacts of human activities at different geographical scales in a comprehensive manner. In order to overcome the shortcomings of each methodology and develop more holistic assessments, the integration of these methodologies is essential. Several studies have attempted to integrate these methodologies either conceptually or through applied case studies. To understand why, how and to what extent these methodologies have been integrated, a total of 110 relevant publications were reviewed. The analysis of the case studies showed that the integration can occur at different positions along the cause-effect chain and from this, a classification scheme was proposed to characterize the different integration approaches. Three categories of integration are distinguished: post-analysis, integration through the combination of results, and integration through the complementation of a driving method. The literature review highlights that the most recurrent type of integration is the latter. While the integration through the complementation of a driving method is more realistic and accurate compared to the other two categories, its development is more complex and a higher data requirement could be needed. In addition to this, there is always the risk of double-counting for all the approaches. None of the integration approaches can be categorized as a full integration, but this is not necessarily needed to have a comprehensive assessment. The most essential aspect is to select the appropriate components from each methodology that can cover both the environmental and socioeconomic costs and benefits of human activities on the ecosystems.


Assuntos
Efeitos Antropogênicos , Ecossistema , Conservação dos Recursos Naturais , Humanos , Medição de Risco
6.
Sci Total Environ ; 770: 145398, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33736356

RESUMO

Responsible water use and sustainable consumption and production are high on the agenda of multiple stakeholders. Different water supply sources are available, including tap water, bottled water, domestically harvested rainwater and domestically abstracted groundwater. The extent to which each of these water supply sources is used, differs over consumption patterns in various housing types, being detached houses, semi-detached houses, terraced houses and apartments. To identify the environmental impact of a household's water use and potential environmental impact reduction strategies, a holistic assessment is required. In this paper, the environmental impact of a household's water use in Flanders (Belgium) was assessed including four different water supply sources and four different consumption patterns by means of a life cycle assessment. The outcomes of this study reveal a large difference between the environmental impact of bottled water use, having a global warming impact of 259 kg CO2-eq.·m-3, compared to the other three supply sources. Tap water supply had the lowest global warming impact (0.17 kg CO2-eq.·m-3) and resource footprint (6.51 MJex·m-3) of all water supply sources. The most efficient strategy to reduce the environmental impact of household's water use is to shift the water consumption from bottled to tap water consumption. This would induce a reduction in global warming impact of the water use of an inhabitant in Flanders by on average 80%, saving 0.1 kg CO2-eq.·day-1 in case of groundwater-based tap water. These results provide insights into sustainable water use for multiple consumption patterns and can be used to better frame the environmental benefits of tap water use.

7.
Sci Total Environ ; 695: 133841, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31422320

RESUMO

Today, there is an ongoing debate about the environmental sustainability of the products of organic farming. To compare the performance of conventional and organic farming systems regarding environmental impact and productivity, the comprehensive environmental assessment tool 'life cycle assessment' can be used. The lower crop yields attained by organic systems compared to conventional farming systems might, however, outweigh the benefits of the use of more environmental-friendly practices when evaluating the environmental impact per product unit. Although these practices are beneficial for the environment, which is reflected in the delivery of a range of ecosystem services (ES), the focus is traditionally put only on the (harvested) product. Because the agricultural product involves actually a bundle of ES, the impact should be allocated among the whole output of an agricultural system. In this study, we propose an allocation procedure based on the capacity of agricultural systems to deliver ES to divide the environmental impact over all agricultural outputs (i.e. provisioning and other ES). Allocation factors are developed for conventional and organic arable farming systems. Applying these allocation factors, we demonstrate that for about half of the studied food products (including maize, potato), organic farming has clear environmental benefits in terms of resource consumption in comparison to conventional cultivation methods. This allocation approach allows a more complete comparison of the environmental sustainability of organically and conventionally produced food.

8.
Sci Total Environ ; 550: 143-156, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26808405

RESUMO

Terrestrial land and its resources are finite, though, for economic and socio-cultural needs of humans, these natural resources are further exploited. It highlights the need to quantify the impact humans possibly have on the environment due to occupation and transformation of land. As a starting point of this paper (1(st) objective), the land use activities, which may be mainly socio-culturally or economically oriented, are identified in addition to the natural land-based processes and stocks and funds that can be altered due to land use. To quantify the possible impact anthropogenic land use can have on the natural environment, linked to a certain product or service, life cycle assessment (LCA) is a tool commonly used. During the last decades, many indicators are developed within the LCA framework in an attempt to evaluate certain environmental impacts of land use. A second objective of this study is to briefly review these indicators and to categorize them according to whether they assess a change in the asset of natural resources for production and consumption or a disturbance of certain ecosystem processes, i.e. ecosystem health. Based on these findings, two enhanced proxy indicators are proposed (3(rd) objective). Both indicators use net primary production (NPP) loss (potential NPP in the absence of humans minus remaining NPP after land use) as a relevant proxy to primarily assess the impact of land use on ecosystem health. As there are two approaches to account for the natural and productive value of the NPP remaining after land use, namely the Human Appropriation of NPP (HANPP) and hemeroby (or naturalness) concepts, two indicators are introduced and the advantages and limitations compared to state-of-the-art NPP-based land use indicators are discussed. Exergy-based spatially differentiated characterization factors (CFs) are calculated for several types of land use (e.g., pasture land, urban land).


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Monitoramento Ambiental/métodos , Biomassa
9.
Sci Total Environ ; 553: 551-564, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26938318

RESUMO

To meet the growing demand, high yielding, but environmentally sustainable agricultural plant production systems are desired. Today, life cycle assessment (LCA) is increasingly used to assess the environmental impact of these agricultural systems. However, the impact results are very diverse due to management decisions or local natural conditions. The impact of grain maize is often generalized and an average is taken. Therefore, we studied variation in production systems. Four types of drivers for variability are distinguished: policy, farm management, year-to-year weather variation and innovation. For each driver, scenarios are elaborated using ReCiPe and CEENE (Cumulative Exergy Extraction from the Natural Environment) to assess the environmental footprint. Policy limits fertilisation levels in a soil-specific way. The resource consumption is lower for non-sandy soils than for sandy soils, but entails however more eutrophication. Farm management seems to have less influence on the environmental impact when considering the CEENE only. But farm management choices such as fertiliser type have a large effect on emission-related problems (e.g. eutrophication and acidification). In contrast, year-to-year weather variation results in large differences in the environmental footprint. The difference in impact results between favourable and poor environmental conditions amounts to 19% and 17% in terms of resources and emissions respectively, and irrigation clearly is an unfavourable environmental process. The best environmental performance is obtained by innovation as plant breeding results in a steadily increasing yield over 25 years. Finally, a comparison is made between grain maize production in Flanders and a generically applied dataset, based on Swiss practices. These very different results endorse the importance of using local data to conduct LCA of plant production systems. The results of this study show decision makers and farmers how they can improve the environmental performance of agricultural systems, and LCA practitioners are alerted to challenges due to variation.


Assuntos
Agricultura/métodos , Monitoramento Ambiental , Zea mays/crescimento & desenvolvimento , Conservação dos Recursos Naturais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA