Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38613808

RESUMO

Glycosaminoglycans (GAGs) are ubiquitous components in the cartilage extracellular matrix (ECM). Ultrastructural arrangement of ECM and GAG-mediated interactions with collagen are known to govern the mechanics in articular cartilage, but these interactions are less clear in other cartilage types. Therefore, this article reviews the current literature on ultrastructure of articular, auricular, meniscal, and nasal septal cartilage, seeking insight into GAG-mediated interactions influencing mechanics. Ultrastructural features of these cartilages are discussed to highlight differences between them. GAG-mediated interactions are reviewed under two categories: interactions with chondrocytes and interactions with other fibrillar macromolecules of the ECM. Moreover, efforts to replicate GAG-mediated interactions to improve mechanical integrity of tissue-engineered cartilage constructs are discussed. In conclusion, studies exploring cartilage specific GAGs are poorly represented in the literature, and the ultrastructure of nasal septal and auricular cartilage is less studied compared with articular and meniscal cartilages. Understanding the contribution of GAGs in cartilage mechanics at the ultrastructural level and translating that knowledge to engineered cartilage will facilitate improvement of cartilage tissue engineering approaches.

2.
J Mech Behav Biomed Mater ; 142: 105868, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119723

RESUMO

Exploring the structure-function relationships of cartilage on a microstructural level is crucial for tissue engineering approaches aiming to restore function. Therefore, a combination of mechanical testing with cell and tissue-level imaging would allow for longitudinal studying loading mechanisms, biological responses and mechanoadaptation of tissues at a microstructural level. This paper describes the design and validation of FELIX, a custom-built device for non-destructive image-guided micromechanical evaluation of biological tissues and tissue-engineered constructs. It combines multiphoton microscopy with non-destructive mechanical testing of native soft tissues. Ten silicone samples of the same size were mechanically tested with FELIX by different users to assess the repeatability and reproducibility. The results indicate that FELIX can successfully substitute mechanical testing protocols with a commercial device without compromising precision. Furthermore, FELIX demonstrated consistent results across repeated measurements, with very small deviations. Therefore, FELIX can be used to accurately measure biomechanical properties by different users for separate studies. Additionally, cell nuclei and collagen of porcine articular cartilage were successfully imaged under compression. Cell viability remained high in chondrocytes cultured in agarose over 21 days. Furthermore, there were no signs of contamination indicating a cell friendly, sterile environment for longitudinal studies. In conclusion, this work demonstrates that FELIX can consistently quantify mechanical measures without compromising precision. Furthermore, it is biocompatible allowing for longitudinal measurements.


Assuntos
Cartilagem Articular , Condrócitos , Animais , Suínos , Reprodutibilidade dos Testes , Cartilagem Articular/fisiologia , Engenharia Tecidual/métodos , Relação Estrutura-Atividade
3.
Front Cell Dev Biol ; 10: 795522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186920

RESUMO

The transfer of stress and strain signals between the extracellular matrix (ECM) and cells is crucial for biochemical and biomechanical cues that are required for tissue morphogenesis, differentiation, growth, and homeostasis. In cartilage tissue, the heterogeneity in spatial variation of ECM molecules leads to a depth-dependent non-uniform strain transfer and alters the magnitude of forces sensed by cells in articular and fibrocartilage, influencing chondrocyte metabolism and biochemical response. It is not fully established how these nonuniform forces ultimately influence cartilage health, maintenance, and integrity. To comprehend tissue remodelling in health and disease, it is fundamental to investigate how these forces, the ECM, and cells interrelate. However, not much is known about the relationship between applied mechanical stimulus and resulting spatial variations in magnitude and sense of mechanical stimuli within the chondrocyte's microenvironment. Investigating multiscale strain transfer and hierarchical structure-function relationships in cartilage is key to unravelling how cells receive signals and how they are transformed into biosynthetic responses. Therefore, this article first reviews different cartilage types and chondrocyte mechanosensing. Following this, multiscale strain transfer through cartilage tissue and the involvement of individual ECM components are discussed. Finally, insights to further understand multiscale strain transfer in cartilage are outlined.

4.
Cartilage ; 13(2_suppl): 486S-494S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34696603

RESUMO

OBJECTIVE: To compare CA4+-enhanced micro-computed tomography (microCT) of bovine articular, meniscal, nasal, and auricular cartilage, each of which possesses a different extracellular matrix (ECM) composition and structure. DESIGN: The diffusion kinetics of CA4+ in different native cartilage types were assessed over 20 hours. The feasibility of CA4+-enhanced microCT to visualize and quantify glycosaminoglycans (GAGs) in these different tissues was tested using safranin-O staining and 1,9-dimethylmethylene blue assay. RESULTS: The diffusion kinetics of CA4+ in auricular cartilage are significantly slower compared with all other cartilage types. Total GAG content per volume correlates to microCT attenuation with an R2 value of 0.79 for all cartilage types. Three-dimensional contrast-enhanced microCT images of spatial GAG distribution reflect safranin-O staining and highlight the differences in ECM structure, with heterogeneous regions with higher GAG concentrations highlighted by the contrast agent. CONCLUSIONS: CA4+-enhanced microCT enables assessment of 3-dimensiona distribution and GAG content in different types of cartilage and has promise as an ex vivo diagnostic technique to monitor matrix development in different tissues over time as well as tissue-engineered constructs.


Assuntos
Cartilagem Articular , Glicosaminoglicanos , Animais , Cartilagem Articular/química , Cartilagem Articular/diagnóstico por imagem , Bovinos , Meios de Contraste , Glicosaminoglicanos/análise , Imageamento Tridimensional , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA