Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(13): 2565-2573, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38513220

RESUMO

In the present work, the photoinduced charge-transfer (CT) behavior of 7-phenyl-6H-pyrido[1,2-a:3,4-b']diindole-6,13(12H)-dione (HCB) as a function of solvent polarity is reported by UV-vis absorption, steady-state and time-resolved fluorescence, and quantum chemical calculations. Calculated excited state energies of HCB at the B3PW91/6-31+G* level in vacuo and in solvents fulfill the energy requirements for singlet fission, which is the most promising path for the generation of highly efficient solar cells. The calculated potential energy curve for the compound reveals that the keto form is the predominant form in the ground state. Large bathochromic shifts in fluorescence with decreasing trends of quantum yield and lifetime indicate the occurrence of intramolecular CT from the indole bicycle to the indolinone moiety of HCB in highly polar solvents. The observed quenching of HCB fluorescence in different solvents without altering the spectral shape upon addition of a donor, triethylamine, is attributed to intermolecular CT, and it was examined in terms of the Stern-Volmer kinetics. The thermodynamics of photoinduced CT processes in HCB was analyzed using the measured photophysical data and cyclic voltammetric redox potentials via the Rehm-Weller equation. Analyses with the semiclassical Marcus theory suggest that both the CT processes fall under the Marcus normal region.

2.
Phys Chem Chem Phys ; 23(23): 13190-13203, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34085069

RESUMO

A series of dyes with the D-π-A architecture has been designed and studied for dye sensitized solar cells (DSSCs). We have used phenothiazine (PTZ) and coumarin (COU) derivatives as the donor unit and benzopyrrole (BTZ) and 2-methyl-2H-isoindole-1,3-(3aH,7aH)-diene (IND) as the acceptor unit along with the azomethine group and thiophene ring as the π-spacer unit. Three electron donating groups viz. -CH3, -NH2, and -OH and four electron withdrawing groups viz. -CF3, -COCl, -F and -NO2 have been attached at the donor and the acceptor units respectively of the four unsubstituted dyes COU-BTZ, PTZ-BTZ, COU-IND and PTZ-IND. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods have been employed to investigate the structural, electronic and photochemical properties of these dyes. The study reveals that the unsubstituted dye PTZ-BTZ possesses the lowest value of ΔH-L. Our study also reveals that attachment of the -NO2 group at the acceptor unit lowers the ΔH-L values of all the dye molecules. We have observed that the excited state oxidation potential (ESOP) of all the dyes lies above the conduction band of the TiO2 semiconducting surface. However, the ground state oxidation potential (GSOP) of most of the dyes belonging to the COU-BTZ and COU-IND groups lies below the redox potential of the I-/I3- redox couple. The total reorganization energy (λtot) values of the COU-BTZ and COU-IND groups of dyes are observed to be low compared to the other groups of dyes. The study of the charge transport properties of the dyes confirms that the designed dyes will act as electron transport materials. The absorption properties of the dyes show that the COU-BTZ group of dyes possesses the maximum values of the absorption wavelength (λmax values) and attaching the -NO2 group at the acceptor unit shifts the λmax values of all the dyes to the longer region. From the study of the electronic properties of the dye-TiO2 complexes it has been observed that the performance of the dyes has been enhanced compared to the isolated dye molecules.

3.
RSC Adv ; 13(38): 26418-26429, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37671345

RESUMO

Here, five new acceptor-donor-acceptor (A-D-A) type small donor molecules C1-C5, have been designed based on the central D unit, dithieno[3,2-b:2',3'-d]pyrrole (DTP). Besides, five different A units, viz. 1,1-dicyano-methylene-5,6-dimethyl-3-indanone, 1,1-dicyano-methylene-5,6-difluoro-3-indanone, 1,1-dicyano-methylene-5,6-dichloro-3-indanone, 1,1-dicyano-methylene-5-nitro-3-indanone, and 1,1-dicyano-methylene-5,6-diamino-3-indanone are selected for these designed compounds C1-C5, respectively. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods have been employed to study the influence of different A units on the geometric, electronic, optical, charge transport and photovoltaic properties of the designed donor molecules. The results reveal that the performance of the designed donor molecules have been improved on attachment of the strong electron withdrawing A units. The observed reorganization energy (λ) values infer the electron donating nature of the designed compounds. Moreover, the absorption properties of the designed compounds manifest that compound C4 possesses the high values of maximum wavelength (λmax) in both gas and solvent phases. The properties of the D/A blends reveal that all designed blends C1-C5/C60-CN, have the capacity to promote charge carrier separation at the D/A interface. Further, the photovoltaic performance of the D/A complexes also reveal that complex C4/C60-CN, with a theoretical PCE of 18%, can be considered as the most promising candidate for application in OSCs.

4.
J Mol Graph Model ; 123: 108514, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37224593

RESUMO

Dye-sensitized solar cells (DSSCs) have drawn a significant interest due to their low production cost, light weight, better flexibility in design, and better tunability. Herein, two metal free organic dyes based on donor-π-acceptor (D-π-A) type architecture having methoxy substituted triphenyl amine (TPA) and methyl substituted indoline(IND) as the donor units, cyanoacrylic acid (CA) as the acceptor unit, and 8H-thieno [2', 3':4,5]thieno[3,2-b]thieno[2,3-d]pyrrole (TTP) unit as π-bridge are successfully designed for fabrication of DSSCs. To tune the optical properties, structural engineering has been carried out at the TTP unit via substituting different +I groups, viz., -H, -CH3, -OCH3, -CH2CH2, -SH, and -OH and different -I groups viz. -CF3, -COCH3, -COOH and -CN. Various structural, electronic and optical parameters are calculated for the designed dyes. Our study reveals that dyes substituted with electron withdrawing groups possess lower ΔH-L values for both TPA-CA and IND-CA groups of dyes. Moreover, the ESOP and GSOP values of all the dyes confirm the spontaneity of the electron injection and dye regeneration processes with respect to the conduction band of the TiO2 surface and redox potential of the I-/I3- redox couple. The absorption properties also manifest the red shift behavior of the designed dyes. Further, from the study of the structural and electronic properties of the dye-Ti5O10 clusters it is evident that the performance of the dyes get increased upon binding to the TiO2 surface. Hence, our study provides a good recommendation for further designing of dyes to enhance the performance of DSSCs.


Assuntos
Corantes , Energia Solar , Corantes/química , Modelos Moleculares , Aminas/química , Semicondutores
5.
RSC Adv ; 11(62): 39246-39261, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-35492466

RESUMO

Here, we have designed a series of dyes following the donor-π-acceptor (D-π-A) architecture by incorporating tetrathiafulvalene (TTF) as the donor unit and phthalazine (PTZ), diketopyrrolopyrrole (DPP) and quinoxaline (QNX) as the acceptor units, along with the thiophene unit as a π-bridge. The designed dyes have been designated as TTF-PTZ, TTF-DPP and TTF-QNX respectively. We have used cyanoacrylic acid as the anchoring group for the dyes TTF-PTZ and TTF-DPP, while for the third dye, TTF-QNX, we used a carboxylic group. The structural, electronic and photochemical properties of the designed dyes are investigated under the regime of density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. In this regard, the dihedral angle, energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), energy difference between the HOMO and LUMO (Δ H-L values), partial density of states (PDOS), ground state oxidation potential (GSOP), excited state oxidation potential (ESOP), ionization potential (IP), electron affinity (EA), molecular electrostatic potential surface (MEPS) analysis, reorganization energy (λ), electronic coupling matrix element (V), charge transfer rate (k CT), hopping mobility (µ hop), absorption spectra, exciton binding energy (EBE) and electron density difference (EDD) of the designed dyes are calculated. This study reveals that the dyes TTF-DPP-4 and TTF-DPP-6' exhibit the lowest Δ H-L values. The study also reveals that the attachment of the -NH2 group at the donor unit and the -NO2 and -CF3 groups at the acceptor units lower the Δ H-L values of all of the designed dyes. We have also observed that the GSOP of all the designed dyes lie below the redox potential of the I-/I3 - electrolyte couple. However, the ESOP of the TTF-PTZ and TTF-QNX groups of dyes, along with the most of the dyes belonging to the TTF-DPP group, lie above the conduction band of the TiO2 semiconducting surface. Moreover, the total reorganization energy (λ tot) values are low for the TTF-DPP and TTF-QNX groups of dyes, which confirm the better electron-hole separation efficiency in these groups of dyes. Furthermore, the absorption properties of the designed dyes indicate that the TTF-DPP groups of dyes possess the maximum absorption wavelength (λ max) values and attachment of the -CH3 group at the donor part increases the electron density of the dyes, which in turn results into the maximum red-shift. Therefore, the study reveals that the designed dyes are likely to exhibit facile charge transport. Moreover, the electronic properties of the dye-TiO2 clusters strengthen the performance of the dyes compared to those of the isolated dyes. Hence, our study provides good recommendations for the further design of dyes to enhance the performance of dye-sensitized solar cells (DSSCs).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA