RESUMO
Current conventional mono and combination therapeutic strategies often fail to target breast cancer tissue effectively due to tumor heterogeneity comprising cancer stem cells (CSCs) and bulk tumor cells. This is further associated with drug toxicity and resistivity in the long run. A nanomedicine platform incorporating combination anti-cancer treatment might overcome these challenges and generate synergistic anti-cancer effects and also reduce drug toxicity. GANT61 and curcumin were co-delivered via polymeric nanoparticles (NPs) for the first time to elicit enhanced anti-tumor activity against heterogeneous breast cancer cell line MCF-7. We adopted the single-emulsion-solvent evaporation method for the preparation of the therapeutic NPs. The GANT61-curcumin PLGA NPs were characterized for their size, shape and chemical properties, and anti-cancer cell studies were undertaken for the plausible explanation of our hypothesis. The synthesized GANT61-curcumin PLGA NPs had a spherical, smooth surface morphology, and an average size of 347.4 d. nm. The NPs induced cytotoxic effects in breast cancer cells at a mid-minimal dosage followed by cell death via autophagy and apoptosis, reduction in their target protein expression along with compromising the self-renewal property of CSCs as revealed by their in vitro cell studies. The dual-drug NPs thus provide a novel perspective on aiding existing anti-cancer nanomedicine therapies to target a heterogeneous tumor mass effectively.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Curcumina/uso terapêutico , Nanopartículas/química , Fosfatidilinositol 3-Quinases/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Proteína GLI1 em Dedos de Zinco/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Adenocarcinoma/ultraestrutura , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/patologia , Neoplasias da Mama/ultraestrutura , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Camundongos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Piridinas/farmacologia , Pirimidinas/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Eletricidade EstáticaRESUMO
Lipid nanoparticles (LNPs), most commonly recognised for their role in COVID-19 mRNA vaccines, are important delivery vehicles for nucleic acid (mRNA, siRNA) therapies. The physicochemical attributes, such as size, nucleic acid encapsulation and electric charge, may have a significant impact on the efficacy of these medicines. In this study, adjustments to aqueous to lipid phase ratios were assessed for their impact on LNP size and other critical quality attributes (CQAs). It was observed that minor adjustments of aqueous-to-organic lipid phase ratios can be used to precisely control the size of ALC-0315-formulated LNPs. This was then used to evaluate the impact of phase ratio and corresponding size ranges on the in vitro and in vivo expression of these LNPs. In HEK293 cells, larger LNPs led to higher expression of the mRNA cargo within the LNPs, with a linear correlation between size and expression. In THP-1 cells this preference for larger LNPs was observed up to 120 d.nm after which there was a fall in expression. In BALB/c mice, however, LNPs at the lowest phase ratio tested, >120 d.nm, showed reduced expression compared to those of range 60-120 d.nm, within which there was no significant difference between sizes. These results suggest a robustness of LNP expression up to 120 d.nm, larger than those <100 d.nm conventionally used in medicine.
RESUMO
Atherosclerosis is Caesar's sword, which poses a huge risk to the present generation. Understanding the atherosclerotic disease cycle would allow ensuring improved diagnosis, better care, and treatment. Unfortunately, a highly effective and safe way of treating atherosclerosis in the medical community remains a continuous challenge. Conventional treatments have shown considerable success, but have some adverse effects on the human body. Natural derived medications or nutraceuticals have gained immense popularity in the treatment of atherosclerosis due to their decreased side effects and toxicity-related issues. In hindsight, the contribution of nutraceuticals in imparting enhanced clinical efficacy against atherosclerosis warrants more experimental evidence. On the other hand, nanotechnology and drug delivery systems (DDS) have revolutionized the way therapeutics are performed and researchers have been constantly exploring the positive effects that DDS brings to the field of therapeutic techniques. It could be as exciting as ever to apply nano-mediated delivery of nutraceuticals as an additional strategy to target the atherosclerotic sites boasting high therapeutic efficiency of the nutraceuticals and fewer side effects.
Assuntos
Aterosclerose/tratamento farmacológico , Suplementos Nutricionais , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Aterosclerose/fisiopatologia , Química Farmacêutica , Endotélio Vascular/fisiopatologia , Células Espumosas/metabolismo , Fatores de Risco de Doenças Cardíacas , Humanos , Mediadores da Inflamação/metabolismo , Lipídeos/química , Nanopartículas Metálicas/química , Placa Aterosclerótica/fisiopatologia , Polímeros/químicaRESUMO
The emergence of pH-sensitive nanoscale particles is beneficial due to their ability to only release cargo in a colonic pH environment, which helps to directly target inflamed tissues in inflammatory bowel disease (IBD). Hence, we have designed the formulation of pH-sensitive biodegradable garcinol (GAR)-loaded poly (lactic-co-glycolic acid) (PLGA) coated with Eudragit® S100 (ES100) (GAR-PLGA-ES100 nanoparticles (NPs)) for reducing inflammation caused by proinflammatory cytokines. The GAR-PLGA-ES100 NPs were prepared using a solvent evaporation technique and characterized for shape and surface morphology. An in vitro drug release study revealed the release of the drug specifically from NPs at the colonic pH of 7.4. The in vitro cytotoxicity of the GAR-PLGA-ES100 NPs was also evaluated and found to be highly biocompatible with CACO-2 cells. These NPs were able to reduce lactate dehydrogenase (LDH) and myeloperoxidase (MPO) activity. Inhibition of the expression of pro-inflammatory cytokine TNF-α , chemokine interleukin (IL)-8 and the nuclear factor kappa light chain enhancer of activated B-cells (NF-κB) was observed after GAR-PLGA-ES100 NPs treatment. Therefore, our results support the idea that GAR-PLGA-ES100 NPs show substantial improvement after the release of the drug, specifically in colonic pH targeting and reduction in the activation of inflammation that leads to IBD, suggesting that GAR-PLGA-ES100 NPs are promising candidates for oral delivery to colonic inflamed tissue.
RESUMO
Cholesterol-rich arterial plaques characterize atherosclerosis, a significant cause of heart disease. Nutraceuticals have received attention over the years, demonstrating potential benefits towards treating and preventing cardiovascular diseases (CVD), including atherosclerosis. Curcumin, a potent polyphenol present in Curcuma longa, has shown remarkable anti-atherosclerotic activity via anti-inflammatory and anti-oxidative properties. The bioavailability and low water solubility of curcumin limit its clinical translational purposes. These issues can be circumvented effectively by nano-drug delivery systems that can target atherosclerotic plaque sites. In this work, we chose to use curcumin and a natural bioenhancer called Bioperine (derived from Piper nigrum) inside a polymeric nano-drug delivery system for targeting atherosclerotic plaque sites. We selected two different ratios of curcumin:Bioperine to study its comparative effect on the inhibition of oxidized low-density lipoprotein (Ox-LDL)-induced foam cell formation. Our studies demonstrated that Cur-Bio PLGA NPs (both ratios) maintained the cell viability in THP-1 monocyte-derived macrophages above 80% at all periods. The 1:0.2:10 ratio of Cur-Bio PLGA NPs at a concentration of 250 µg/mL illustrated an enhanced reduction in the relative cholesterol content in the THP-1-derived foam cells compared to the 1:1:10 ratio. Confocal microscopy analysis also revealed a reduction in macrophage-mediated foam cell formation when administered with both the ratios of Cur-Bio PLGA NPs. Relative fold change in the mRNA expression of the genes involved in the inflammatory pathways in the atherosclerotic process downregulated NF-κB, CCL2/MCP-1, CD-36, and STAT-3 activity while upregulating the SCAR-B1 expression when treated with the Cur-Bio PLGA NPs. This study thus highlights the importance of natural-based compounds towards the therapeutic intervention against atherosclerotic activity when administered as preventive medicine.
RESUMO
The human intestine, which harbors trillions of symbiotic microorganisms, may enter into dysbiosis when exposed to a genetic defect or environmental stress. The naissance of chronic inflammation due to the battle of the immune system with the trespassing gut bacteria leads to the rise of inflammatory bowel disease (IBD). Though the genes behind the scenes and their link to the disease are still unclear, the onset of IBD occurs in young adults and has expanded from the Western world into the newly industrialized countries. Conventional drug deliveries depend on a daily heavy dosage of immune suppressants or anti-inflammatory drugs targeted for the treatment of two types of IBD, ulcerative colitis (UC) and Crohn's disease (CD), which are often associated with systemic side effects and adverse toxicities. Advances in oral delivery through nanotechnology seek remedies to overcome the drawbacks of these conventional drug delivery systems through improved drug encapsulation and targeted delivery. In this review, we discuss the association of genetic factors, the immune system, the gut microbiome, and environmental factors like diet in the pathogenesis of IBD. We also review the various physiological concerns required for oral delivery to the gastrointestinal tract (GIT) and new strategies in nanotechnology-derived, colon-targeting drug delivery systems.
RESUMO
The evolving dynamics of drug resistance due to tumor heterogeneity often creates impediments to traditional therapies making it a challenging issue for cancer cure. Breast cancer often faces challenges of current therapeutic interventions owing to its multiple complexities and high drug resistivityï¼ for example against drugs like trastuzumab and tamoxifen. Drug resistance in the majority of breast cancer is often aided by the overtly expressed P-glycoprotein (P-gp) that guides in the rapid drug efflux of chemotherapy drugs. Despite continuous endeavors and ground-breaking achievements in the pursuit of finding better cancer therapeutic avenues, drug resistance is still a menace to hold back. Among newer therapeutic approaches, the application of phytonutrients such as alkaloids to suppress P-gp activity in drug-resistant cancers has found an exciting niche in the arena of alternative cancer therapies. In this work, we would like to present a black pepper alkaloid derivative known as BioPerine-loaded chitosan (CS)-polyethylene glycol (PEG) coated polylactic acid (PLA) hybrid polymeric nanoparticle to improve the bioavailability of BioPerine and its therapeutic efficacy in suppressing P-gp expression in MDA-MB 453 breast cancer cell line. Our findings revealed that the CS-PEG-BioPerine-PLA nanoparticles demonstrated a smooth spherical morphology with an average size of 316 nm, with improved aqueous solubility, and provided sustained BioPerine release. The nanoparticles also enhanced in vitro cytotoxicity and downregulation of P-gp expression in MDA-MB 453 cells compared to the commercial inhibitor verapamil hydrochloride, thus promising a piece of exciting evidence for the development of BioPerine based nano-drug delivery system in combination with traditional therapies as a crucial approach to tackling multi-drug resistance in cancers.
RESUMO
Suboptimal chemotherapy of anticancer drugs may be attributed to a variety of cellular mechanisms, which synergize to dodge the drug responses. Nearly 2 decades of heat-shock protein 90 (Hsp90)-targeted drug discovery has shown that the mono-therapy with Hsp90 inhibitors seems to be relatively ineffective compared with combination treatment due to several cellular dodging mechanisms. In this article, we have tried to analyze and review the Hsp90 and mammalian target of rapamycin (m-TOR)-mediated drug resistance mechanisms. By using this information we have discussed about the rationale behind use of drug combinations that includes both or any one of these inhibitors for cancer therapy. Currently, biodegradable nano vector (NV)-loaded novel drug delivery systems have shown to resolve the problems of poor bioavailability. NVs of drugs such as paclitaxel, doxorubicin, daunorubicin, and others have been successfully introduced for medicinal use. Hence, looking at the success of NVs, in this article we have also discussed the progress made in the delivery of biodegradable NV-loaded Hsp90 and m-TOR-targeted inhibitors in multiple drug combinations. We have also discussed the possible ways by which the market success of biodegradable NVs can positively impact the clinical trials of anti-Hsp90 and m-TOR combination strategy.
Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Neoplasias/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Animais , Antineoplásicos/uso terapêutico , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Neoplasias/metabolismoRESUMO
Heat Shock Protein 90 (Hsp90) has been extensively explored as a potential drug target for cancer therapies. 17- N-allylamino- 17-demethoxygeldanamycin (17AAG) was the first Hsp90 inhibitor to enter clinical trials for cancer therapy. However, native drug is being shown to have considerable anticancer efficacy against pancreatic cancer when used in combination therapy regime. Further, magnetic hyperthermia has shown to have promising effects against pancreatic cancer in combination with known cyto-toxic drugs under both target and non-targeted scenarios. Hence, in order to enhance the efficacy of 17AAG against pancreatic cancer, we developed poly (lactic-co-glycolic acid) (PLGA) coated, 17AAG and Fe3O4 loaded magnetic nanoparticle formulations by varying the relative concentration of polymer. We found that polymer concentration affects the magnetic strength and physicochemical properties of formulation. We were also able to see that our aqueous dispensable formulations were able to provide anti-pancreatic cancer activity for MIA PaCa-2 cell line in dose and time dependent manner in comparison to mice fibroblast cell lines (L929). Moreover, the in-vitro magnetic hyperthermia against MIA PaCa-2 provided proof principle that our 2-in-1 particles may work against cancer cell lines effectively.