Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Am Chem Soc ; 145(41): 22555-22562, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37796974

RESUMO

Divalent lanthanide (Ln) compounds are excellent reducing agents with unique reactivity profiles. These reagents are typically used in superstoichiometric amounts, often in combination with harmful additives. Reactions catalytic in Ln(II) reagents that retain the reactivity and selectivity of the stoichiometric transformations are currently lacking due to the absence of effective and selective methods to form reactive Ln(II) species from stable precursors. Here, active Ln(II) is generated from a Ln(III) precursor through reduction by a photoexcited coumarin or carbostyril chromophore, which, in turn, is regenerated by a sacrificial reductant. The reductant can be metallic (Zn) or organic (amines) and can be used in strictly stoichiometric amounts. A broad range of reactions, including C-halogen, C═C, C═X (X = O, N), P═O, and N═N reductions, as well as C-C, C-X (X = N, S, P), and N-N couplings were readily carried out in yields and selectivities comparable to or better than those afforded by the analogous stoichiometric transformations. The reaction outcomes could be altered by changing the ligand or the lanthanide or through the addition of environmentally benign additives (e.g., water). EPR spectroscopy supported the formation of both Ln(II) and oxidized chromophore intermediates. Taken together, these results establish photochemical Ln(II) generation as a powerful strategy for rendering Ln(II)-mediated reactions catalytic.

2.
J Am Chem Soc ; 144(46): 21056-21067, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36347032

RESUMO

Yb(III) complexes of macrocyclic ligands based on 1,4,7,10-tetraazacyclododecane were synthesized. The ligands carried a carbostyril chromophore for Yb(III) sensitization, and carboxylate or carbamide donors for metal binding, forming complexes of 0, +1, +2, or +3 overall charge. The coordination geometry was little affected by the replacement of carboxylates with amides, as shown by paramagnetic 1H NMR spectroscopy. The Yb(III)/Yb(II) reduction potentials were dependent on the nature of the metal binding site, and the more positively charged complexes were easier to reduce. Carbostyril excitation resulted in Yb(III) luminescence in every complex. The residual carbostyril fluorescence quantum yields were smaller in complexes containing more reducible Yb(III) centers decreasing from 5.9% for uncharged complexes to 3.1-4.4% in +3 charged species, suggesting photoinduced electron transfer (PeT) from the antenna to the Yb(III). The relative Yb(III) luminescence quantum yields were identical within the experimental error, except for the +3 charged complex with fully methylated coordinating amides, which was the most intense Yb(III) emitter of the series in water. Quenching of the Yb(III) excited state by NH vibrations proved to limit Yb(III) emission. No clear improvement of the Yb(III) sensitization efficiency was shown upon faster PeT. This result can be explained by the concomitant sensitization of Yb(III) by phonon-assisted energy transfer (PAEnT) from the antenna triplet excited state, which was completely quenched in all of the Yb complexes. Depopulation of the triplet by PeT quenching of the donor singlet excited state would be compensated by the sensitizing nature of the PeT pathway, thus resulting in a constant overall sensitization efficiency across the series.


Assuntos
Ácidos Carboxílicos , Luminescência , Ligantes , Transferência de Energia , Amidas
3.
Anal Chem ; 93(3): 1842-1850, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33356162

RESUMO

Fluorescence signal enhancement via isothermal nucleic acid amplification is an important approach for sensitive imaging of intra- or extracellular nucleic acid or protein biomarkers. Rolling circle amplification (RCA) is frequently applied for fluorescence in situ imaging but faces limitations concerning multiplexing, dynamic range, and the required multiple washing steps before imaging. Here, we show that Förster resonance energy transfer (FRET) between fluorescent dyes and between lanthanide (Ln) complexes and dyes that hybridize to ß-actin-specific RCA products in HaCaT cells can afford washing-free imaging of single ß-actin proteins. Proximity-dependent FRET could be monitored directly after or during (real-time monitoring) dye or Ln DNA probe incubation and could efficiently distinguish between photoluminescence from ß-actin-specific RCA and DNA probes freely diffusing in solution or nonspecifically attached to cells. Moreover, time-gated FRET imaging with the Ln-dye FRET pairs efficiently suppressed sample autofluorescence and improved the signal-to-background ratio. Our results present an important proof of concept of RCA-FRET imaging with a strong potential to advance in situ RCA toward easier sample preparation, higher-order multiplexing, autofluorescence-free detection, and increased dynamic range by real-time monitoring of in situ RCA.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Técnicas de Amplificação de Ácido Nucleico , Proteínas/análise , Linhagem Celular , Sondas de DNA/química , Corantes Fluorescentes/química , Humanos , Fatores de Tempo
4.
J Am Chem Soc ; 142(30): 13190-13200, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32623881

RESUMO

The quenching of sensitized Eu(III) luminescence by photoinduced electron transfer from the excited light-harvesting antenna to Eu(III) was investigated. A series of complexes incorporating different metal binding sites and thus having varying Eu(III)/Eu(II) reduction potentials were prepared. The complexes were fully characterized using a combination of single-crystal X-ray crystallography and paramagnetic 1H NMR spectroscopy, the results of which support the structural similarity of the complexes. The redox and photophysical behavior of the Eu(III) center and the light-harvesting antenna were studied using cyclic voltammetry and steady-state and time-resolved emission spectroscopy on the nanosecond and millisecond time scales. The contribution of photoinduced electron transfer to the overall reduction of the Eu(III) luminescence quantum yield was found to be comparable and, in many cases, larger than the quenching caused by well-established processes such as coupling to X-H oscillators. These results suggest that the elimination or mitigation of photoinduced electron transfer could substantially improve the emissive properties of the widely used Eu(III)-based emitters.

5.
Inorg Chem ; 59(1): 106-117, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31613593

RESUMO

Azide- and alkyne-functionalized bioconjugable luminescent lanthanide complexes are reported. Reactive handles were introduced into the complexes by the late-stage modification of a methylenecarboxylic acid antenna pendent group. Tb and Eu quantum yields (11-13% and 3.4-3.6%, respectively) were not greatly affected by the presence of the azide or the alkyne compared to the parent complex (ΦTb = 10%, ΦEu = 2.8%). Two avenues were explored for improving the luminescence of the lanthanide (Ln) complexes: (1) attaching the antenna through a tertiary amide linker and (2) replacing a monodentate carboxylate ligand with a bidentate pyridylcarboxylate donor, which yielded a nonadentate ligand that could saturate the lanthanide coordination sphere and eliminate the quenching metal-bound water molecule that was present in the octadentate complexes. The combination of both approaches yielded Eu and Tb emitters with 5.8% and 46% quantum yields. For the Eu complex, this value was the same as ΦEu in the octadentate parent complex. We attribute this to increased photoinduced electron transfer quenching in the nonadentate species, which compensates for the reduced O-H quenching.

6.
Molecules ; 25(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198318

RESUMO

The coordination compounds of the trivalent lanthanide ions (Ln(III)) have unique photophysical properties. Ln(III) excitation is usually performed through a light-harvesting antenna. To enable Ln(III)-based emitters to reach their full potential, an understanding of how complex structure affects sensitization and quenching processes is necessary. Here, the role of the linker between the antenna and the metal binding fragment was studied. Four macrocyclic ligands carrying coumarin 2 or 4-methoxymethylcarbostyril sensitizing antennae linked to an octadentate macrocyclic ligand binding site were synthesized. Complexation with Ln(III) (Ln = La, Sm, Eu, Gd, Tb, Yb and Lu) yielded species with overall -1, 0, or +2 and +3-charge. Paramagnetic 1H NMR spectroscopy indicated subtle differences between the coumarin- and carbostyril-carrying Eu(III) and Yb(III) complexes. Cyclic voltammetry showed that the effect of the linker on the Eu(III)/Eu(II) apparent reduction potential was dependent on the electronic properties of the N-substituent. The Eu(III), Tb(III) and Sm(III) complexes were all luminescent. Coumarin-sensitized complexes were poorly emissive; photoinduced electron transfer was not a major quenching pathway in these species. These results show that seemingly similar emitters can undergo very different photophysical processes, and highlight the crucial role the linker can play.


Assuntos
Acetatos/química , Amidas/química , Elementos da Série dos Lantanídeos/química , Sítios de Ligação , Cumarínicos/química , Hidroxiquinolinas/química , Ligantes , Luminescência , Espectroscopia de Ressonância Magnética , Metais/química , Modelos Moleculares , Estrutura Molecular , Quinolonas/química , Espectrofotometria Ultravioleta , Temperatura
7.
J Am Chem Soc ; 140(35): 10975-10979, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30122038

RESUMO

Multiplex imaging in the red and near-infrared (NIR) should be an enabling tool for the real-time investigation of biological systems. Currently available emitters have short luminescent lifetimes, broad absorption and emission bands, and small Stokes shifts, which limits multiplexing in this region to two colors. NIR-emitting luminescent lanthanide (Ln) complexes carrying hydroporphyrin (chlorin) sensitizing antennae are excitable in the red through the narrow, intense and tunable chlorin absorptions. Both emission- and excitation-based multiplexing are possible, the former by exciting the same antenna appended to different Lns, the latter by attaching different chlorins with nonoverlapping absorptions to the same Ln. The combination of excitation and emission spectroscopies allows for the straightforward differentiation of up to four different complexes.

8.
J Am Chem Soc ; 139(16): 5756-5767, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28388066

RESUMO

Luminescent lanthanide (Ln(III)) complexes with coumarin or carbostyril antennae were synthesized and their photophysical properties evaluated using steady-state and time-resolved UV-vis spectroscopy. Ligands bearing distant hydroxycoumarin-derived antennae attached through triazole linkers were modest sensitizers for Eu(III) and Tb(III), whereas ligands with 7-amidocarbostyrils directly linked to the coordination site could reach good quantum yields for multiple Ln(III), including the visible emitters Sm(III) and Dy(III), and the near-infrared emitters Nd(III) and Yb(III). The highest lanthanide-centered luminescence quantum yields were 35% (Tb), 7.9% (Eu), 0.67% (Dy), and 0.18% (Sm). Antennae providing similar luminescence intensities with 2-4 Ln-emitters were identified. Photoredox quenching of the carbostyril antenna excited states was observed for all Eu(III)-complexes and should be sensitizing in the case of Yb(III); the scope of the process extends to Ln(III) for which it has not been seen previously, specifically Dy(III) and Sm(III). The proposed process is supported by photophysical and electrochemical data. A FRET-type mechanism was identified in architectures with both distant and close antennae for all of the Lns. This mechanism seems to be the only sensitizing one at long distance and probably contributes to the sensitization at shorter distances along with the triplet pathway. The complexes were nontoxic to either bacterial or mammalian cells. Complexes of an ester-functionalized ligand were taken up by bacteria in a concentration-dependent manner. Our results suggest that the effects of FRET and photoredox quenching should be taken into consideration when designing luminescent Ln complexes. These results also establish these Ln(III)-complexes for multiplex detection beyond the available two-color systems.

9.
Chemistry ; 23(17): 4089-4095, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27859811

RESUMO

The de novo syntheses of chemically stable chlorins with five-membered heterocyclic (furane, thiophene, formylfurane and formylthiophene) substituents in selected meso- and ß-positions are reported. Heterocycle incorporation in the 3- and 13-positions shifted the chlorin absorption and emission to the red (up to λem =680 nm), thus these readily incorporated substituents function analogously to auxochromes present in chlorophylls, for example, formyl and vinyl groups. Photophysical, theoretical and X-ray crystallographic experiments revealed small but significant differences between the behavior of the furan- and the thiophene-based auxochromes. Four regioisomeric bis-thienylchlorins (3,10; 3,13, 3,15 and 10,15) were oxidatively electropolymerized; the chlorin monomer geometry had a profound impact on the polymerization efficiency and the electrochemical properties of the resulting material. Chemical co-polymerization of 3,13-bis-thienylchlorin with 3-hexylthiophene yielded an organic-soluble red-emitting polymer.

10.
J Org Chem ; 82(23): 12908-12913, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29094938

RESUMO

Bromoporphyrins were prepared by the metal-mediated self-condensation of brominated 1-formyldipyrromethanes. Depending on the conditions, Mg(II)-2,12-dibromoporphyrin and Mg(II)-2-bromoporphyrin could be obtained in up to 11% and 17% isolated yield, respectively. Zn(II) was also a viable templating metal. The positions of the bromine substituents were confirmed by 2D-NMR spectroscopic analysis and the X-ray crystal structure of a derivative. Suzuki and Sonogashira reactions of the bromoporphyrins yielded 2-substituted or 2,12-disubstituted porphyrins with red-shifted absorption and emission spectra. This method provides access to the minimalist core of ß-mono- and ß,ß'-disubstituted porphyrins from readily available starting materials.

11.
Inorg Chem ; 56(5): 3044-3054, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28186734

RESUMO

We present the synthesis and characterization of meso-ferrocenyl-substituted hydroporphyrins (chlorins) and 1,1'-linked chlorin dimers. The dipyrromethane chlorin precursors were also transformed into Fc-substituted BODIPYs and 1,1'-ferrocenyl-linked BODIPY dimers. The chlorin dimers were studied by 1D and 2D NMR experiments and DFT calculations, which showed that their solution structures were dependent on the central metal. Monomeric and dimeric Ni(II) chlorins had similar 1H NMR spectra. Monomeric and dimeric free base, Zn(II), and Pd(II) chlorins, on the other hand, showed significantly more different spectra. The eclipsed conformer of the free base chlorin dimer was calculated to be energetically more favored than the open form. The chlorin and BODIPY fluorescence emissions were quenched in the Fc-substituted compounds; these could be recovered by oxidation of the Fe(II) center. Cyclic voltammetry showed up to five oxidation waves for the free base chlorin dimer, which suggests that the macrocycles were not behaving independently of each other.

12.
Inorg Chem ; 54(17): 8174-6, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26288077

RESUMO

A dipicolinate (dpa)-based platform for the rapid testing of potential lanthanide-sensitizing antennae was developed; 4-methyl-7-O-alkylcoumarin-appended dpa could sensitize four lanthanides. The platform could be used to estimate the photophysical properties of a more difficult-to-prepare 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid based structure carrying the same antenna.


Assuntos
Elementos da Série dos Lantanídeos/química , Substâncias Luminescentes/síntese química , Ácidos Picolínicos/química , Ligantes , Substâncias Luminescentes/química , Estrutura Molecular
13.
Angew Chem Int Ed Engl ; 54(6): 1787-90, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25504579

RESUMO

Multiplex analyte detection in complex dynamic systems is desirable for the investigation of cellular communication networks as well as in medical diagnostics. A family of lanthanide-based responsive luminescent probes for multiplex detection is reported. The high modularity of the probe design enabled the rapid assembly of both green and red emitters for a large variety of analytes by the simple exchange of the lanthanide or an analyte-cleavable caging group, respectively. The real-time three-color detection of up to three analytes was demonstrated, thus setting the stage for the non-invasive investigation of interconnected biological processes.


Assuntos
Enzimas/metabolismo , Elementos da Série dos Lantanídeos/química , Sondas Moleculares , Luminescência
14.
Chemistry ; 19(9): 3099-109, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23307197

RESUMO

Coumarin-sensitized, long-wavelength-absorbing luminescent Eu(III)-complexes have been synthesized and characterized. The lanthanide binding site consists of a cyclen-based chelating framework that is attached through a short linker to a 7-hydroxycoumarin, a 7-B(OH)(2)-coumarin, a 7-O-(4-pinacolatoboronbenzyl)-coumarin or a 7-O-(4-methoxybenzyl)-coumarin. The syntheses are straightforward, use readily available building blocks, and proceed through a small number of high-yielding steps. The sensitivity of coumarin photophysics to the 7-substituent enables modulation of the antenna-absorption properties, and thus the lanthanide excitation spectrum. Reactions of the boronate-based functionalities (cages) with H(2)O(2) yielded the corresponding 7-hydroxycoumarin species. The same species was produced with peroxynitrite in a ×10(6)-10(7)-fold faster reaction. Both reactions resulted in the emergence of a strong ≈407 nm excitation band, with concomitant decrease of the 366 nm band of the caged probe. In aqueous solution the methoxybenzyl caged Eu-complex was quenched by ONOO(-). We have shown that preliminary screening of simple coumarin-based antennae through UV/Vis absorption spectroscopy is possible as the changes in absorption profile translate with good fidelity to changes in Eu(III)-excitation profile in the fully elaborated complex. Taken together, our results show that the 7-hydroxycoumarin antenna is a viable scaffold for the construction of turn-on and ratiometric luminescent probes.


Assuntos
Quelantes/química , Cumarínicos/química , Európio/química , Elementos da Série dos Lantanídeos/química , Umbeliferonas/química , Absorção , Luminescência , Medições Luminescentes , Estrutura Molecular , Espectrofotometria Ultravioleta
15.
J Am Chem Soc ; 134(24): 9832-5, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22339236

RESUMO

A new strategy for accessing analyte-responsive luminescent probes is presented. The lanthanide luminescence of Eu and Tb centers is switched on by the analyte-triggered formation of a sensitizing antenna from a nonsensitizing caged precursor. As the cage can be freely varied, an array of probes for different analytes (Pd(0/2+), H(2)O(2), F(-), ß-galactosidase) can be created from the same core structure. The probe design affords nanomolar to micromolar detection limits, provides the capability to detect two analytes in parallel, and can be utilized to monitor enzymatic activity in live cells.


Assuntos
Európio/química , Peróxido de Hidrogênio/análise , Substâncias Luminescentes/química , Térbio/química , beta-Galactosidase/análise , Escherichia coli/enzimologia , Limite de Detecção , Medições Luminescentes/métodos , Paládio/análise
16.
Inorg Chem ; 51(19): 10366-74, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22978627

RESUMO

Lanthanide (Yb(3+), Nd(3+)) complexes equipped with red-absorbing hydroporphyrin (chlorin) antennae were synthesized and characterized. The syntheses are scalable, highly modular, and enable the introduction of different chlorins functionalized with a single reactive group (COOH or NH(2)). Absorption maxima were dependent on chlorin substitution pattern (monomeso aryl or dimeso aryl) and metalation state (free base or zinc chelate). The complexes benefit from dual chlorin (610-639 nm) and lanthanide (980 or 1065 nm for Yb- or Nd-complexes, respectively) emission in the biologically relevant red and near IR region of the spectrum.


Assuntos
Complexos de Coordenação/química , Substâncias Luminescentes/química , Neodímio/química , Porfirinas/química , Itérbio/química , Complexos de Coordenação/síntese química , Substâncias Luminescentes/síntese química , Espectrometria de Fluorescência
17.
Chem Commun (Camb) ; 58(48): 6853-6856, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35616538

RESUMO

Carbostyrils monofluorinated in the 3, 5, or 6 positions were synthesised from olefinic precursors via a photochemical isomerisation-cyclisation route, and incorporated into octadentate cyclen triacetate ligands that formed luminescent complexes with Tb(III) and Eu(III). The photophysical properties of the emitters were strongly dependent on the position of the fluorination.


Assuntos
Elementos da Série dos Lantanídeos , Halogenação , Elementos da Série dos Lantanídeos/química , Ligantes , Luminescência
18.
Dalton Trans ; 51(43): 16596-16604, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36263855

RESUMO

Yb(III) complexes based on ligands with a 1,4,7-triazacyclononane (tacn) macrocyclic core were synthesised. The complexes carry a 4-methoxymethyl-substituted carbostyril chromophore that serves as a light-harvesting antenna. The ligands supply 5 nitrogen and 3 oxygen donors via 1 methylenecarboxamide and 2 picolinate donors, creating +1 charged complexes with an octadentate binding environment. The electronic properties of the picolinates are modulated by varying the substitution at the 4 position with OMe, H, Cl, or CF3. Cyclic voltammetry indicated that the tacn-based Yb(III) complexes were easier to reduce than the analogous cyclen complexes. The first reductive event is likely picolinate-centred, followed by the formation of further reduced species. Antenna excitation yielded Yb(III) luminescence in the near-infrared (NIR) region in all cases. The antenna photophysical properties were consistent with intraligand photoinduced electron transfer from the excited carbostyril to the picolinate groups. The relative quantum yields of Yb(III) luminescence were determined. The lowest value was obtained for the complex with the most efficient antenna-to-picolinate photoinduced electron transfer. Despite intraligand electron transfer quenching of the antenna, the tacn-based Yb complexes were more emissive than their cyclen analogues, highlighting the influence of the ligand structure on the luminescence properties of NIR emissive lanthanide(III) ions.


Assuntos
Ciclamos , Elementos da Série dos Lantanídeos , Ligantes , Elementos da Série dos Lantanídeos/química , Íons
19.
FASEB J ; 24(9): 3160-70, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20385618

RESUMO

Cutaneous malignant melanoma remains a therapeutic challenge, and patients with advanced disease have limited survival. Photodynamic therapy (PDT) has been successfully used to treat many malignancies, and it may show promise as an antimelanoma modality. However, high melanin levels in melanomas can adversely affect PDT effectiveness. Herein the extent of melanin contribution to melanoma resistance to PDT was investigated in a set of melanoma cell lines that markedly differ in the levels of pigmentation; 3 new bacteriochlorins successfully overcame the resistance. Cell killing studies determined that bacteriochlorins are superior at (LD(50) approximately 0.1 microM) when compared with controls such as the FDA-approved Photofrin (LD(50) approximately 10 microM) and clinically tested LuTex (LD(50) approximately 1 microM). The melanin content affects PDT effectiveness, but the degree of reduction is significantly lower for bacteriochlorins than for Photofrin. Microscopy reveals that the least effective bacteriochlorin localizes predominantly in lysosomes, while the most effective one preferentially accumulates in mitochondria. Interestingly all bacteriochlorins accumulate in melanosomes, and subsequent illumination leads to melanosomal damage shown by electron microscopy. Fluorescent probes show that the most effective bacteriochlorin produces significantly higher levels of hydroxyl radicals, and this is consistent with the redox properties suggested by molecular-orbital calculations. The best in vitro performing bacteriochlorin was tested in vivo in a mouse melanoma model using spectrally resolved fluorescence imaging and provided significant survival advantage with 20% of cures (P<0.01).


Assuntos
Melanoma/tratamento farmacológico , Fotoquimioterapia/métodos , Porfirinas/síntese química , Porfirinas/uso terapêutico , Animais , Linhagem Celular Tumoral , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Estrutura Molecular , Porfirinas/química
20.
Dalton Trans ; 50(45): 16670-16677, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34757364

RESUMO

Luminescent Eu(III) and Tb(III) complexes were synthesised from octadentate ligands carrying various carbostyril sensitizing antennae and two bidentate picolinate donors. Antennae were connected to the metal binding site via tertiary amide linkers. Antennae and donors were assembled on a 1,4,7-triazacyclononane (tacn) platform. Solution- and solid-state structures were comparable to those of previously reported complexes with tacn architectures, with nine-coordinate distorted tricapped trigonal prismatic Ln(III) centres, and distinct from those based on 1,4,7,10-tetraazacyclododecane (cyclen) macrocycles. In contrast, the photophysical properties of these tertiary amide tacn-based complexes were more comparable to those of previously reported systems with cyclen ligands, showing efficient Eu(III) and Tb(III) luminescence. This represents an improvement over secondary amide-linked analogues, and is due to a greatly increased sensitization efficiency in the tertiary amide-linked complexes. Tertiary amide-linked Eu(III) and Tb(III) emitters were more photostable than their secondary amide-linked analogues due to the suppression of photoinduced electron transfer and back energy transfer.


Assuntos
Elementos da Série dos Lantanídeos/química , Piridinas/química , Cristalografia por Raios X , Ligantes , Luminescência , Espectroscopia de Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA