Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nucleic Acids Res ; 52(8): 4659-4675, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38554102

RESUMO

RexA and RexB function as an exclusion system that prevents bacteriophage T4rII mutants from growing on Escherichia coli λ phage lysogens. Recent data established that RexA is a non-specific DNA binding protein that can act independently of RexB to bias the λ bistable switch toward the lytic state, preventing conversion back to lysogeny. The molecular interactions underlying these activities are unknown, owing in part to a dearth of structural information. Here, we present the 2.05-Å crystal structure of the λ RexA dimer, which reveals a two-domain architecture with unexpected structural homology to the recombination-associated protein RdgC. Modelling suggests that our structure adopts a closed conformation and would require significant domain rearrangements to facilitate DNA binding. Mutagenesis coupled with electromobility shift assays, limited proteolysis, and double electron-electron spin resonance spectroscopy support a DNA-dependent conformational change. In vivo phenotypes of RexA mutants suggest that DNA binding is not a strict requirement for phage exclusion but may directly contribute to modulation of the bistable switch. We further demonstrate that RexA homologs from other temperate phages also dimerize and bind DNA in vitro. Collectively, these findings advance our mechanistic understanding of Rex functions and provide new evolutionary insights into different aspects of phage biology.


Assuntos
Bacteriófago lambda , Proteínas de Ligação a DNA , Modelos Moleculares , Proteínas Virais , Bacteriófago lambda/genética , Cristalografia por Raios X , Proteínas Virais/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ligação Proteica , Multimerização Proteica , DNA Viral/genética , DNA Viral/metabolismo , Mutação , Lisogenia , Escherichia coli/virologia , Escherichia coli/genética , Escherichia coli/metabolismo , DNA/metabolismo , DNA/química
2.
Biophys J ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38932458

RESUMO

We compared the conformations of the transmembrane domain (TMD) of influenza A M2 (IM2) protein reconstituted in 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPC/DOPS) bilayers to those in isolated Escherichia coli (E. coli) membranes, having preserved its native proteins and lipids. IM2 is a single-pass transmembrane protein known to assemble into a homo-tetrameric proton channel. To represent this channel, we made a construct containing the IM2's TMD region flanked by the juxtamembrane residues. The single cysteine substitution, L43C, of leucine located in the bilayer polar region was paramagnetically tagged with a methanethiosulfonate nitroxide label for the electron spin resonance (ESR) study. For this particular residue, we probed the conformations of the spin-labeled IM2 reconstituted in DOPC/DOPS and isolated E. coli membranes using continuous-wave ESR and double electron-electron resonance (DEER) spectroscopy. The total protein-to-lipid molar ratio spanned the range from 1:230 to 1:10,400. The continuous-wave ESR spectra corresponded to very slow spin-label motion in both environments. In all cases, the DEER data were reconstructed into distance distributions with well-resolved peaks at 1.68 and 2.37 nm in distance and amplitude ratios of 1.41 ± 0.2 and 2:1, respectively. This suggests four nitroxide spin labels located at the corners of a square, indicative of an axially symmetric tetramer. The distance modeling of DEER data with molecular modeling software applied to the NMR molecular structures (PDB: 2L0J) confirmed the symmetry and closed state of the C-terminal exit pore of the IM2 TMD tetramer in agreement with the model. Thus, we can conclude that, under conditions of pH 7.4 used in this study, IM2 TMD has similar conformations in model lipid bilayers and membranes made of native E. coli lipids and proteins of comparable thickness and fluidity, notwithstanding the complexity of the E. coli membranes caused by their lipid diversity and the abundance of integral and peripheral membrane proteins.

3.
J Struct Biol ; 215(1): 107943, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796461

RESUMO

The HIV-1-encoded protein Vpu forms an oligomeric ion channel/pore in membranes and interacts with host proteins to support the virus lifecycle. However, Vpu molecular mechanisms are currently not well understood. Here, we report on the Vpu oligomeric organization under membrane and aqueous conditions and provide insights into how the Vpu environment affects the oligomer formation. For these studies, we designed a maltose-binding protein (MBP)-Vpu chimera protein and produced it in E. coli in soluble form. We analyzed this protein using analytical size-exclusion chromatography (SEC), negative staining electron microscopy (nsEM), and electron paramagnetic resonance (EPR) spectroscopy. Surprisingly, we found that MBP-Vpu formed stable oligomers in solution, seemingly driven by Vpu transmembrane domain self-association. A coarse modeling of nsEM data as well as SEC and EPR data suggests that these oligomers most likely are pentamers, similar to what was reported regarding membrane-bound Vpu. We also noticed reduced MBP-Vpu oligomer stability upon reconstitution of the protein in ß-DDM detergent and mixtures of lyso-PC/PG or DHPC/DHPG. In these cases, we observed greater oligomer heterogeneity, with MBP-Vpu oligomeric order generally lower than in solution; however, larger oligomers were also present. Notably, we found that in lyso-PC/PG, above a certain protein concentration, MBP-Vpu assembles into extended structures, which had not been reported for Vpu. Therefore, we captured various Vpu oligomeric forms, which can shed light on Vpu quaternary organization. Our findings could be useful in understanding Vpu organization and function in cellular membranes and could provide information regarding the biophysical properties of single-pass transmembrane proteins.


Assuntos
HIV-1 , Proteínas do Vírus da Imunodeficiência Humana , Proteínas Virais Reguladoras e Acessórias , Proteínas Viroporinas , Membrana Celular/metabolismo , Escherichia coli , HIV-1/química , Canais Iônicos/química , Proteínas do Vírus da Imunodeficiência Humana/química , Proteínas Viroporinas/química , Proteínas Virais Reguladoras e Acessórias/química
4.
Proc Natl Acad Sci U S A ; 116(11): 4963-4972, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30808807

RESUMO

Translation of environmental cues into cellular behavior is a necessary process in all forms of life. In bacteria, this process frequently involves two-component systems in which a sensor histidine kinase (HK) autophosphorylates in response to a stimulus before subsequently transferring the phosphoryl group to a response regulator that controls downstream effectors. Many details of the molecular mechanisms of HK activation are still unclear due to complications associated with the multiple signaling states of these large, multidomain proteins. To address these challenges, we combined complementary solution biophysical approaches to examine the conformational changes upon activation of a minimal, blue-light-sensing histidine kinase from Erythrobacter litoralis HTCC2594, EL346. Our data show that multiple conformations coexist in the dark state of EL346 in solution, which may explain the enzyme's residual dark-state activity. We also observe that activation involves destabilization of the helices in the dimerization and histidine phosphotransfer-like domain, where the phosphoacceptor histidine resides, and their interactions with the catalytic domain. Similar light-induced changes occur to some extent even in constitutively active or inactive mutants, showing that light sensing can be decoupled from activation of kinase activity. These structural changes mirror those inferred by comparing X-ray crystal structures of inactive and active HK fragments, suggesting that they are at the core of conformational changes leading to HK activation. More broadly, our findings uncover surprising complexity in this simple system and allow us to outline a mechanism of the multiple steps of HK activation.


Assuntos
Histidina Quinase/metabolismo , Luz , Difosfato de Adenosina/metabolismo , Escuridão , Ativação Enzimática/efeitos da radiação , Histidina Quinase/química , Modelos Moleculares , Mutação/genética , Domínios Proteicos , Estabilidade Proteica , Estrutura Secundária de Proteína
5.
Protein Expr Purif ; 173: 105659, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32360379

RESUMO

Human T-cell leukemia virus type 1 is an oncovirus that causes aggressive adult T-cell leukemia but is also responsible for severe neurodegenerative and endocrine disorders. Combatting HTLV-1 infections requires a detailed understanding of the viral mechanisms in the host. Therefore, in vitro studies of important virus-encoded proteins would be critical. Our focus herein is on the HTLV-1-encoded regulatory protein p13II, which interacts with the inner mitochondrial membrane, increasing its permeability to cations (predominantly potassium, K+). Thereby, this protein affects mitochondrial homeostasis. We report on our progress in developing specific protocols for heterologous expression of p13II in E. coli, and methods for its purification and characterization. We succeeded in producing large quantities of highly-pure full-length p13II, deemed to be its fully functional form. Importantly, our particular approach based on the fusion of ubiquitin to the p13II C-terminus was instrumental in increasing the persistently low expression of soluble p13II in its native form. We subsequently developed approaches for protein spin labeling and a conformation study using double electron-electron resonance (DEER) spectroscopy and a fluorescence-based cation uptake assay for p13II in liposomes. Our DEER results point to large protein conformation changes occurring upon transition from the soluble to the membrane-bound state. The functional assay on p13II-assisted transport of thallium (Tl+) through the membrane, wherein Tl+ substituted for K+, suggests transmembrane potential involvement in p13II function. Our study lays the foundation for expansion of in vitro functional and structural investigations on p13II and would aid in the development of structure-based protein inhibitors and markers.


Assuntos
Escherichia coli , Vírus Linfotrópico T Tipo 1 Humano/genética , Proteínas dos Retroviridae , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas dos Retroviridae/biossíntese , Proteínas dos Retroviridae/química , Proteínas dos Retroviridae/genética , Proteínas dos Retroviridae/isolamento & purificação
6.
Biomacromolecules ; 21(7): 2786-2794, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32469507

RESUMO

RGD is a prolific example of a tripeptide used in biomaterials for cell adhesion, but the potency of free or surface-bound RGD tripeptide is orders-of-magnitude less than the RGD domain within natural proteins. We designed a set of peptides with varying lengths, composed of fragments of fibronectin protein whose central three residues are RGD, in order to vary their conformational behavior without changing the binding site's chemical environment. With these peptides, we measure the conformational dynamics and transient structure of the active site. Our studies reveal how flanking residues affect conformational behavior and integrin binding. We find that disorder of the binding site is important to the potency of RGD peptides and that transient hydrogen bonding near the RGD site affects both the energy landscape roughness of the peptides and peptide binding. This phenomenon is independent of longer-range folding interactions and helps explain why short binding sequences, including RGD itself, do not fully replicate the integrin-targeting properties of extracellular matrix proteins. Our studies reinforce that peptide binding is a holistic event and fragments larger than those directly involved in binding should be considered in the design of peptide epitopes for functional biomaterials.


Assuntos
Oligopeptídeos , Peptídeos , Sequência de Aminoácidos , Adesão Celular
7.
Biophys J ; 116(5): 807-817, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30777307

RESUMO

pH is an important factor that affects the protein structure, stability, and activity. Here, we probe the nature of the low-pH structural form of the homodimeric CcdB (controller of cell death B) protein. Characterization of CcdB protein at pH 4 and 300 K using circular dichroism spectroscopy, 8-anilino-1-naphthalene-sulphonate binding, and Trp solvation studies suggests that it forms a partially unfolded state with a dry core at equilibrium under these conditions. CcdB remains dimeric at pH 4 as shown by multiple techniques, such as size-exclusion chromatography coupled to multiangle light scattering, analytical ultracentrifugation, and electron paramagnetic resonance. Comparative analysis using two-dimensional 15N-1H heteronuclear single-quantum coherence NMR spectra of CcdB at pH 4 and 7 suggests that the pH 4 and native state have similar but nonidentical structures. Hydrogen-exchange-mass-spectrometry studies demonstrate that the pH 4 state has substantial but anisotropic changes in local stability with core regions close to the dimer interface showing lower protection but some other regions showing higher protection relative to pH 7.


Assuntos
Proteínas de Bactérias/química , Desdobramento de Proteína , Anisotropia , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína
8.
Biochemistry ; 57(38): 5507-5512, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30004675

RESUMO

An intensively investigated intermediate state of protein folding is the molten globule (MG) state, which contains secondary but hardly any tertiary structure. In previous work, we have determined the distances between interacting spins within maltose binding protein (MBP) in its native state using continuous wave and double electron-electron resonance (DEER) electron paramagnetic resonance (EPR) spectroscopy. Seven double mutants had been employed to investigate the structure within the two domains of MBP. DEER data nicely corroborated the previously available X-ray data. Even in its MG state, MBP is known to still bind its ligand maltose. We therefore hypothesized that there must be a defined structure around the binding pocket of MBP already in the absence of tertiary structure. Here we have investigated the functional and structural difference between native and MG state in the open and closed form with a new set of MBP mutants. In these, the spin-label positions were placed near the active site. Binding of its ligands leads to a conformational change from open to closed state, where the two domains are more closely together. The complete set of MBP mutants was analyzed at pH 3.2 (MG) and pH 7.4 (native state) using double-quantum coherence EPR. The values were compared with theoretical predictions of distances between the labels in biradicals constructed by molecular modeling from the crystal structures of MBP in open and closed form and were found to be in excellent agreement. Measurements show a defined structure around the binding pocket of MBP in MG, which explains maltose binding. A new and important finding is that in both states ligand-free MBP can be found in open and closed form, while ligand-bound MBP appears only in closed form because of maltose binding.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas Ligantes de Maltose/química , Maltose/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica , Marcadores de Spin
9.
J Biol Chem ; 292(21): 8773-8785, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28428246

RESUMO

Proteins are dynamic entities that populate conformational ensembles, and most functions of proteins depend on their dynamic character. Allostery, in particular, relies on ligand-modulated shifts in these conformational ensembles. Hsp70s are allosteric molecular chaperones with conformational landscapes that involve large rearrangements of their two domains (viz. the nucleotide-binding domain and substrate-binding domain) in response to adenine nucleotides and substrates. However, it remains unclear how the Hsp70 conformational ensemble is populated at each point of the allosteric cycle and how ligands control these populations. We have mapped the conformational species present under different ligand-binding conditions throughout the allosteric cycle of the Escherichia coli Hsp70 DnaK by two complementary methods, ion-mobility mass spectrometry and double electron-electron resonance. Our results obtained under biologically relevant ligand-bound conditions confirm the current picture derived from NMR and crystallographic data of domain docking upon ATP binding and undocking in response to ADP and substrate. Additionally, we find that the helical lid of DnaK is a highly dynamic unit of the structure in all ligand-bound states. Importantly, we demonstrate that DnaK populates a partially docked state in the presence of ATP and substrate and that this state represents an energy minimum on the DnaK allosteric landscape. Because Hsp70s are emerging as potential drug targets for many diseases, fully mapping an allosteric landscape of a molecular chaperone like DnaK will facilitate the development of small molecules that modulate Hsp70 function via allosteric mechanisms.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de Choque Térmico HSP70/química , Modelos Moleculares , Regulação Alostérica , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Estrutura Secundária de Proteína
10.
Proc Natl Acad Sci U S A ; 112(8): 2455-60, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675479

RESUMO

Dynamics are hypothesized to play an important role in the transmission of signals across membranes by receptors. Bacterial chemoreceptors are long helical proteins that consist of a periplasmic ligand-binding domain; a transmembrane region; a cytoplasmic HAMP (histidine kinase, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases) domain; and a kinase-control module (KCM). The KCM is further composed of adaptation, hinge, and protein interaction regions (PIRs), the latter of which binds the histidine kinase CheA and adaptor CheW. Fusions of the Escherichia coli aspartate receptor KCM to HAMP domains of defined structure (H1-Tar vs. H1-2-Tar) give opposite responses in phosphotransfer and cellular assays, despite similar binding to CheA and CheW. Pulsed dipolar ESR spectroscopy (PDS) of these isolated on and off dimeric effectors reveals that, in the kinase-on state, the HAMP is more conformationally destabilized compared with the PIR, whereas in the kinase-off state, the HAMP is more compact, and the PIR samples a greater breadth of conformations. On and off HAMP states produce different conformational effects at the KCM junction, but these differences decrease through the adaptation region and into the hinge only to return with the inverted relationship in the PIR. Continuous wave-ESR of the spin-labeled proteins confirms that broader PDS distance distributions correlate with increased rates of dynamics. Conformational breadth in the adaptation region changes with charge alterations caused by modification enzymes. Activating modifications broaden the HAMP conformational ensemble but correspondingly, compact the PIR. Thus, chemoreceptors behave as coupled units, in which dynamics in regions proximal and distal to the membrane change coherently but with opposite sign.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Regulação Alostérica , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli , Proteínas de Escherichia coli , Histidina Quinase , Proteínas Quimiotáticas Aceptoras de Metil , Modelos Moleculares , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Marcadores de Spin
11.
Biophys J ; 112(7): 1383-1395, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28402881

RESUMO

HAMP domains are dimeric, four-helix bundles that transduce conformational signals in bacterial receptors. Genetic studies of the Escherichia coli serine receptor (Tsr) provide an opportunity to understand HAMP conformational behavior in terms of functional output. To increase its stability, the Tsr HAMP domain was spliced into a poly-HAMP unit from the Pseudomonas aeruginosa Aer2 receptor. Within the chimera, the Tsr HAMP undergoes a thermal melting transition at a temperature much lower than that of the Aer2 HAMP domains. Pulse-dipolar electron spin resonance spectroscopy and site-specific spin-labeling confirm that the Tsr HAMP maintains a four-helix bundle. Pulse-dipolar electron spin resonance spectroscopy was also used to study three well-characterized HAMP mutational phenotypes: those that cause flagella rotation that is counterclockwise (CCW) A and kinase-off; CCW B and also kinase-off; and, clockwise (CW) and kinase-on. Conformational properties of the three HAMP variants support a biphasic model of dynamic bundle stability, but also indicate distinct conformational changes within the helix bundle. Functional kinase-on (CW) and kinase-off (CCW A) states differ by concerted changes in the positions of spin-label sites at the base of the bundle. Opposite shifts in the subunit separation distances of neighboring residues at the C-termini of the α1 and α2 helices are consistent with a helix scissors motion or a gearbox rotational model of HAMP activation. In the drastic kinase-off lesion of CCW B, the α1 helices unfold and the α2 helices form a tight two-helix coiled-coil. The substitution of a critical residue in the Tsr N-terminal linker or control cable reduces conformational heterogeneity at the N-terminus of α1 but does not affect structure at the C-terminus of α2. Overall, the data suggest that transitions from on- to off-states involve decreased motional amplitudes of the Tsr HAMP coupled with helix rotations and movements toward a two-helix packing mode.


Assuntos
Proteínas Quimiotáticas Aceptoras de Metil/química , Proteínas Recombinantes de Fusão/química , Transdução de Sinais , Substituição de Aminoácidos , Aminoácidos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Mutação , Domínios Proteicos , Estabilidade Proteica , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
12.
J Biol Chem ; 291(50): 25809-25814, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27803157

RESUMO

Flagellated bacteria modulate their swimming behavior in response to environmental cues through the CheA/CheY signaling pathway. In addition to responding to external chemicals, bacteria also monitor internal conditions that reflect the availability of oxygen, light, and reducing equivalents, in a process termed "energy taxis." In Escherichia coli, the transmembrane receptor Aer is the primary energy sensor for motility. Genetic and physiological data suggest that Aer monitors the electron transport chain through the redox state of its FAD cofactor. However, direct biochemical data correlating FAD redox chemistry with CheA kinase activity have been lacking. Here, we test this hypothesis via functional reconstitution of Aer into nanodiscs. As purified, Aer contains fully oxidized FAD, which can be chemically reduced to the anionic semiquinone (ASQ). Oxidized Aer activates CheA, whereas ASQ Aer reversibly inhibits CheA. Under these conditions, Aer cannot be further reduced to the hydroquinone, in contrast to the proposed Aer signaling model. Pulse ESR spectroscopy of the ASQ corroborates a potential mechanism for signaling in that the resulting distance between the two flavin-binding PAS (Per-Arnt-Sim) domains implies that they tightly sandwich the signal-transducing HAMP domain in the kinase-off state. Aer appears to follow oligomerization patterns observed for related chemoreceptors, as higher loading of Aer dimers into nanodiscs increases kinase activity. These results provide a new methodological platform to study Aer function along with new mechanistic details into its signal transduction process.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Histidina Quinase/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/genética , Histidina Quinase/química , Histidina Quinase/genética , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas Quimiotáticas Aceptoras de Metil/química , Proteínas Quimiotáticas Aceptoras de Metil/genética , Oxirredução , Domínios Proteicos
13.
Proc Natl Acad Sci U S A ; 111(43): E4568-76, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25316790

RESUMO

Protein framework alterations in heritable Cu, Zn superoxide dismutase (SOD) mutants cause misassembly and aggregation in cells affected by the motor neuron disease ALS. However, the mechanistic relationship between superoxide dismutase 1 (SOD1) mutations and human disease is controversial, with many hypotheses postulated for the propensity of specific SOD mutants to cause ALS. Here, we experimentally identify distinguishing attributes of ALS mutant SOD proteins that correlate with clinical severity by applying solution biophysical techniques to six ALS mutants at human SOD hotspot glycine 93. A small-angle X-ray scattering (SAXS) assay and other structural methods assessed aggregation propensity by defining the size and shape of fibrillar SOD aggregates after mild biochemical perturbations. Inductively coupled plasma MS quantified metal ion binding stoichiometry, and pulsed dipolar ESR spectroscopy evaluated the Cu(2+) binding site and defined cross-dimer copper-copper distance distributions. Importantly, we find that copper deficiency in these mutants promotes aggregation in a manner strikingly consistent with their clinical severities. G93 mutants seem to properly incorporate metal ions under physiological conditions when assisted by the copper chaperone but release copper under destabilizing conditions more readily than the WT enzyme. Altered intradimer flexibility in ALS mutants may cause differential metal retention and promote distinct aggregation trends observed for mutant proteins in vitro and in ALS patients. Combined biophysical and structural results test and link copper retention to the framework destabilization hypothesis as a unifying general mechanism for both SOD aggregation and ALS disease progression, with implications for disease severity and therapeutic intervention strategies.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/patologia , Mutação/genética , Agregação Patológica de Proteínas/enzimologia , Agregação Patológica de Proteínas/genética , Superóxido Dismutase/genética , Ácidos/metabolismo , Esclerose Lateral Amiotrófica/genética , Cobre/farmacologia , Cristalografia por Raios X , Ácido Edético/farmacologia , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Fenótipo , Substâncias Protetoras/farmacologia , Espalhamento a Baixo Ângulo , Soluções , Superóxido Dismutase/química , Superóxido Dismutase-1
14.
PLoS Biol ; 11(2): e1001479, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23424282

RESUMO

HAMP domains are signal relay modules in >26,000 receptors of bacteria, eukaryotes, and archaea that mediate processes involved in chemotaxis, pathogenesis, and biofilm formation. We identify two HAMP conformations distinguished by a four- to two-helix packing transition at the C-termini that send opposing signals in bacterial chemoreceptors. Crystal structures of signal-locked mutants establish the observed structure-to-function relationships. Pulsed dipolar electron spin resonance spectroscopy of spin-labeled soluble receptors active in cells verify that the crystallographically defined HAMP conformers are maintained in the receptors and influence the structure and activity of downstream domains accordingly. Mutation of HR2, a key residue for setting the HAMP conformation and generating an inhibitory signal, shifts HAMP structure and receptor output to an activating state. Another HR2 variant displays an inverted response with respect to ligand and demonstrates the fine energetic balance between "on" and "off" conformers. A DExG motif found in membrane proximal HAMP domains is shown to be critical for responses to extracellular ligand. Our findings directly correlate in vivo signaling with HAMP structure, stability, and dynamics to establish a comprehensive model for HAMP-mediated signal relay that consolidates existing views on how conformational signals propagate in receptors. Moreover, we have developed a rational means to manipulate HAMP structure and function that may prove useful in the engineering of bacterial taxis responses.


Assuntos
Proteínas de Bactérias/química , Células Quimiorreceptoras/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transdução de Sinais
15.
Biophys J ; 108(4): 893-902, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25692594

RESUMO

Pulse dipolar electron-spin resonance in the form of double electron electron resonance was applied to strategically placed, site-specifically attached pairs of nitroxide spin labels to monitor changes in the mini TAR DNA stem-loop structure brought on by the HIV-1 nucleocapsid protein NCp7. The biophysical structural evidence was at Ångstrom-level resolution under solution conditions not amenable to crystallography or NMR. In the absence of complementary TAR RNA, double labels located in both the upper and the lower stem of mini TAR DNA showed in the presence of NCp7 a broadened distance distribution between the points of attachment, and there was evidence for several conformers. Next, when equimolar amounts of mini TAR DNA and complementary mini TAR RNA were present, NCp7 enhanced the annealing of their stem-loop structures to form duplex DNA-RNA. When duplex TAR DNA-TAR RNA formed, double labels initially located 27.5 Å apart at the 3'- and 5'-termini of the 27-base mini TAR DNA relocated to opposite ends of a 27 bp RNA-DNA duplex with 76.5 Å between labels, a distance which was consistent with the distance between the two labels in a thermally annealed 27-bp TAR DNA-TAR RNA duplex. Different sets of double labels initially located 26-27 Å apart in the mini TAR DNA upper stem, appropriately altered their interlabel distance to ~35 Å when a 27 bp TAR DNA-TAR RNA duplex formed, where the formation was caused either through NCp7-induced annealing or by thermal annealing. In summary, clear structural evidence was obtained for the fraying and destabilization brought on by NCp7 in its biochemical function as an annealing agent and for the detailed structural change from stem-loop to duplex RNA-DNA when complementary RNA was present.


Assuntos
Pareamento de Bases , DNA de Forma B/química , DNA Viral/química , RNA Viral/química , HIV-1/química , Sequências Repetidas Invertidas , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química
16.
Biochemistry ; 54(50): 7309-12, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26636181

RESUMO

Cyclooxygenases (COXs) are heme-containing sequence homodimers that utilize tyrosyl radical-based catalysis to oxygenate substrates. Tyrosyl radicals are formed from a single turnover of substrate in the peroxidase active site generating an oxy-ferryl porphyrin cation radical intermediate that subsequently gives rise to a Tyr-385 radical in the cyclooxygenase active site and a Tyr-504 radical nearby. We have utilized double-quantum coherence (DQC) spectroscopy to determine the distance distributions between Tyr-385 and Tyr-504 radicals in COX-2. The distances obtained with DQC confirm that Tyr-385 and Tyr-504 radicals were generated in each monomer and accurately match the distances measured in COX-2 crystal structures.


Assuntos
Ciclo-Oxigenase 2/química , Análise Espectral/métodos , Tirosina/química , Dimerização , Modelos Moleculares
17.
Biochemistry ; 54(22): 3454-68, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25967982

RESUMO

Bacterial chemoreceptors associate with the histidine kinase CheA and coupling protein CheW to form extended membrane arrays that receive and transduce environmental signals. A receptor trimers-of-dimers resides at each vertex of the hexagonal protein lattice. CheA is fully activated and regulated when it is integrated into the receptor assembly. To mimic these states in solution, we have engineered chemoreceptor cytoplasmic kinase-control modules (KCMs) based on the Escherichia coli aspartate receptor Tar that are covalently fused and trimerized by a foldon domain (Tar(FO)). Small-angle X-ray scattering, multi-angle light scattering, and pulsed-dipolar electron spin resonance spectroscopy of spin-labeled proteins indicate that the Tar(FO) modules assemble into homogeneous trimers wherein the protein interaction regions closely associate at the end opposite to the foldon domains. The Tar(FO) variants greatly increase the saturation levels of phosphorylated CheA (CheA-P), indicating that the association with a trimer of receptor dimers changes the fraction of active kinase. However, the rate constants for CheA-P formation with the Tar variants are low compared to those for autophosphorylation by free CheA, and net phosphotransfer from CheA to CheY does not increase commensurately with CheA autophosphorylation. Thus, the Tar variants facilitate slow conversion to an active form of CheA that then undergoes stable autophosphorylation and is capable of subsequent phosphotransfer to CheY. Free CheA is largely incapable of phosphorylation but contains a small active fraction. Addition of Tar(FO) to CheA promotes a planar conformation of the regulatory domains consistent with array models for the assembly state of the ternary complex and different from that observed with a single inhibitory receptor. Introduction of Tar(FO) into E. coli cells activates endogenous CheA to produce increased clockwise flagellar rotation, with the effects increasing in the presence of the chemotaxis methylation system (CheB/CheR). Overall, the Tar(FO) modules demonstrate that trimerized signaling tips self-associate, bind CheA and CheW, and facilitate conversion of CheA to an active conformation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de Membrana/química , Multimerização Proteica , Receptores de Superfície Celular/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Histidina Quinase , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
18.
Biophys J ; 107(6): 1441-52, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25229151

RESUMO

Tau is a microtubule-associated protein that is genetically linked to dementia and linked to Alzheimer's disease via its presence in intraneuronal neurofibrillary tangle deposits, where it takes the form of aggregated paired helical and straight filaments. Although the precise mechanisms by which tau contributes to neurodegeneration remain unclear, tau aggregation is commonly considered to be a critical component of tau-mediated pathogenicity. Nevertheless, the context in which tau aggregation begins in vivo is unknown. Tau is enriched in membrane-rich neuronal structures such as axons and growth cones, and can interact with membranes both via intermediary proteins and directly via its microtubule-binding domain (MBD). Membranes efficiently facilitate tau aggregation in vitro, and may therefore provide a physiologically relevant context for nucleating tau aggregation in vivo. Furthermore, tau-membrane interactions may potentially play a role in tau's poorly understood normal physiological functions. Despite the potential importance of direct tau-membrane interactions for tau pathology and physiology, the structural mechanisms that underlie such interactions remain to be elucidated. Here, we employ electron spin resonance spectroscopy to investigate the secondary and long-range structural properties of the MBD of three-repeat tau isoforms when bound to lipid vesicles and membrane mimetics. We show that the membrane interactions of the tau MBD are mediated by short amphipathic helices formed within each of the MBD repeats in the membrane-bound state. To our knowledge, this is the first detailed elucidation of helical tau structure in the context of intact lipid bilayers. We further show, for the first time (to our knowledge), that these individual helical regions behave as independent membrane-binding sites linked by flexible connecting regions. These results represent the first (to our knowledge) detailed structural view of membrane-bound tau and provide insights into potential mechanisms for membrane-mediated tau aggregation. Furthermore, the results may have implications for the structural basis of tau-microtubule interactions and microtubule-mediated tau aggregation.


Assuntos
Membrana Celular/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Microtúbulos/metabolismo , Sequências Repetitivas de Aminoácidos , Proteínas tau/química , Proteínas tau/metabolismo , Sequência de Aminoácidos , Membrana Celular/química , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
19.
Biophys J ; 107(7): 1669-74, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25296320

RESUMO

We demonstrate the ability of pulsed dipolar electron spin resonance (ESR) spectroscopy (PDS) to report on the conformation of Cu-Zn superoxide dismutase (SOD1) through the sensitive measurement of dipolar interactions between inherent Cu(2+) ions. Although the extent and the anisotropy of the Cu ESR spectrum provides challenges for PDS, Ku-band (17.3 GHz) double electron-electron resonance and double-quantum coherence variants of PDS coupled with distance reconstruction methods recover Cu-Cu distances in good agreement with crystal structures. Moreover, Cu-PDS measurements expose distinct differences between the conformational properties of wild-type SOD1 and a single-residue variant (I149T) that leads to the disease amyotrophic lateral sclerosis (ALS). The I149T protein displays a broader Cu-Cu distance distribution within the SOD1 dimer compared to wild-type. In a nitroxide (NO)-labeled sample, distance distributions obtained from Cu-Cu, Cu-NO, and NO-NO separations reveal increased structural heterogeneity within the protein and a tendency for mutant dimers to associate. In contrast, perturbations caused by the ALS mutation are completely masked in the crystal structure of I149T. Thus, PDS readily detects alterations in metalloenzyme solution properties not easily deciphered by other methods and in doing so supports the notion that increased range of motion and associations of SOD1 ALS variants contribute to disease progression.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Cobre/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Mutação , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Cristalografia por Raios X , Progressão da Doença , Humanos , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Superóxido Dismutase/genética
20.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260371

RESUMO

We compared the conformations of the transmembrane domain (TMD) of influenza A M2 (IAM2) protein reconstituted at pH 7.4 in DOPC/DOPS bilayers to those in isolated E. coli membranes, having preserved its native proteins and lipids. IAM2 is a single-pass transmembrane protein known to assemble into homo-tetrameric proton channel. To represent this channel, we made a construct containing the IAM2's TMD region flanked by the juxtamembrane residues. The single cysteine substitute, L43C, of leucine located in the bilayer polar region was paramagnetically tagged with a methanethiosulfonate nitroxide label for the ESR (electron spin resonance) study. We compared the conformations of the spin-labeled IAM2 residing in DOPC/DOPS and native E. coli membranes using continuous-wave (CW) ESR and double electron-electron resonance (DEER) spectroscopy. The total protein-to-lipid molar ratio spanned the range from 1:230 to 1:10,400⩦ The CW ESR spectra corresponded to a nearly rigid limit spin label dynamics in both environments. In all cases, the DEER data were reconstructed into the distance distributions showing well-resolved peaks at 1.68 nm and 2.37 nm. The peak distance ratio was 1.41±0.2 and the amplitude ratio was 2:1. This is what one expects from four nitroxide spin-labels located at the corners of a square, indicative of an axially symmetric tetramer. Distance modeling of DEER data with molecular modeling software applied to the NMR molecular structures (PDB: 2L0J) confirmed the symmetry and closed state of the C-terminal exit pore of the IAM2 tetramer in agreement with the NMR model. Thus, we can conclude that IAM2 TMD has similar conformations in model and native E. coli membranes of comparable thickness and fluidity, notwithstanding the complexity of the E. coli membranes caused by their lipid diversity and the abundance of integral and peripheral membrane proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA