Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Development ; 147(10)2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32366678

RESUMO

Directional migration during embryogenesis and tumor progression faces the challenge that numerous external signals need to converge to precisely control cell movement. The Rho guanine exchange factor (GEF) Trio is especially well suited to relay signals, as it features distinct catalytic domains to activate Rho GTPases. Here, we show that Trio is required for Xenopus cranial neural crest (NC) cell migration and cartilage formation. Trio cell-autonomously controls protrusion formation of NC cells and Trio morphant NC cells show a blebbing phenotype. Interestingly, the Trio GEF2 domain is sufficient to rescue protrusion formation and migration of Trio morphant NC cells. We show that this domain interacts with the DEP/C-terminus of Dishevelled (DVL). DVL - but not a deletion construct lacking the DEP domain - is able to rescue protrusion formation and migration of Trio morphant NC cells. This is likely mediated by activation of Rac1, as we find that DVL rescues Rac1 activity in Trio morphant embryos. Thus, our data provide evidence for a novel signaling pathway, whereby Trio controls protrusion formation of cranial NC cells by interacting with DVL to activate Rac1.


Assuntos
Movimento Celular/genética , Proteínas Desgrenhadas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Crista Neural/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Proteínas Desgrenhadas/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Crista Neural/embriologia , Fenótipo , Plasmídeos/genética , Ligação Proteica/genética , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Transfecção , Proteínas de Xenopus/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
2.
Hum Mol Genet ; 29(2): 305-319, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31813957

RESUMO

Kabuki syndrome is an autosomal dominant developmental disorder with high similarities to CHARGE syndrome. It is characterized by a typical facial gestalt in combination with short stature, intellectual disability, skeletal findings and additional features like cardiac and urogenital malformations, cleft palate, hearing loss and ophthalmological anomalies. The major cause of Kabuki syndrome are mutations in KMT2D, a gene encoding a histone H3 lysine 4 (H3K4) methyltransferase belonging to the group of chromatin modifiers. Here we provide evidence that Kabuki syndrome is a neurocrestopathy, by showing that Kmt2d loss-of-function inhibits specific steps of neural crest (NC) development. Using the Xenopus model system, we find that Kmt2d loss-of-function recapitulates major features of Kabuki syndrome including severe craniofacial malformations. A detailed marker analysis revealed defects in NC formation as well as migration. Transplantation experiments confirm that Kmt2d function is required in NC cells. Furthermore, analyzing in vivo and in vitro NC migration behavior demonstrates that Kmt2d is necessary for cell dispersion but not protrusion formation of migrating NC cells. Importantly, Kmt2d knockdown correlates with a decrease in H3K4 monomethylation and H3K27 acetylation supporting a role of Kmt2d in the transcriptional activation of target genes. Consistently, using a candidate approach, we find that Kmt2d loss-of-function inhibits Xenopus Sema3F expression, and overexpression of Sema3F can partially rescue Kmt2d loss-of-function defects. Taken together, our data reveal novel functions of Kmt2d in multiple steps of NC development and support the hypothesis that major features of Kabuki syndrome are caused by defects in NC development.


Assuntos
Anormalidades Múltiplas/enzimologia , Face/anormalidades , Doenças Hematológicas/enzimologia , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Crista Neural/metabolismo , Doenças Vestibulares/enzimologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Acetilação , Animais , Movimento Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Face/patologia , Doenças Hematológicas/genética , Doenças Hematológicas/metabolismo , Doenças Hematológicas/patologia , Histonas/metabolismo , Mutação com Perda de Função , Metilação , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Crista Neural/enzimologia , Crista Neural/patologia , Placa Neural/crescimento & desenvolvimento , Placa Neural/metabolismo , Placa Neural/patologia , Semaforinas/genética , Semaforinas/metabolismo , Doenças Vestibulares/genética , Doenças Vestibulares/metabolismo , Doenças Vestibulares/patologia , Xenopus/embriologia , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/fisiologia
3.
Genesis ; 59(1-2): e23404, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33351273

RESUMO

Neurocristopathies are human congenital syndromes that arise from defects in neural crest (NC) development and are typically associated with malformations of the craniofacial skeleton. Genetic analyses have been very successful in identifying pathogenic mutations, however, model organisms are required to characterize how these mutations affect embryonic development thereby leading to complex clinical conditions. The African clawed frog Xenopus laevis provides a broad range of in vivo and in vitro tools allowing for a detailed characterization of NC development. Due to the conserved nature of craniofacial morphogenesis in vertebrates, Xenopus is an efficient and versatile system to dissect the morphological and cellular phenotypes as well as the signaling events leading to NC defects. Here, we review a set of techniques and resources how Xenopus can be used as a disease model to investigate the pathogenesis of Kabuki syndrome and neurocristopathies in a wider sense.


Assuntos
Anormalidades Múltiplas/genética , Modelos Animais de Doenças , Face/anormalidades , Doenças Hematológicas/genética , Doenças Vestibulares/genética , Xenopus laevis/genética , Anormalidades Múltiplas/patologia , Animais , Face/patologia , Doenças Hematológicas/patologia , Histona Desmetilases/genética , Histona-Lisina N-Metiltransferase/genética , Crista Neural/metabolismo , Crista Neural/patologia , Doenças Vestibulares/patologia , Proteínas de Xenopus/genética , Xenopus laevis/fisiologia
4.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502237

RESUMO

Neural crest (NC) cells are highly migratory cells that contribute to various vertebrate tissues, and whose migratory behaviors resemble cancer cell migration and invasion. Information exchange via dynamic NC cell-cell contact is one mechanism by which the directionality of migrating NC cells is controlled. One transmembrane protein that is most likely involved in this process is protein tyrosine kinase 7 (PTK7), an evolutionary conserved Wnt co-receptor that is expressed in cranial NC cells and several tumor cells. In Xenopus, Ptk7 is required for NC migration. In this study, we show that the Ptk7 protein is dynamically localized at cell-cell contact zones of migrating Xenopus NC cells and required for contact inhibition of locomotion (CIL). Using deletion constructs of Ptk7, we determined that the extracellular immunoglobulin domains of Ptk7 are important for its transient accumulation and that they mediate homophilic binding. Conversely, we found that ectopic expression of Ptk7 in non-NC cells was able to prevent NC cell invasion. However, deletion of the extracellular domains of Ptk7 abolished this effect. Thus, Ptk7 is sufficient at protecting non-NC tissue from NC cell invasion, suggesting a common role of PTK7 in contact inhibition, cell invasion, and tissue integrity.


Assuntos
Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Movimento Celular , Inibição de Contato , Neoplasias Pulmonares/metabolismo , Crista Neural/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Polaridade Celular , Humanos , Neoplasias Pulmonares/patologia , Xenopus laevis
5.
Hum Mol Genet ; 27(8): 1343-1352, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29432577

RESUMO

CHARGE syndrome is an autosomal dominant malformation disorder caused by heterozygous loss of function mutations in the chromatin remodeler CHD7. Chd7 regulates the expression of Sema3a, which also contributes to the pathogenesis of Kallmann syndrome, a heterogeneous condition with the typical features hypogonadotropic hypogonadism and an impaired sense of smell. Both features are common in CHARGE syndrome suggesting that SEMA3A may provide a genetic link between these syndromes. Indeed, we find evidence that SEMA3A plays a role in the pathogenesis of CHARGE syndrome. First, Chd7 is enriched at the Sema3a promotor in neural crest cells and loss of function of Chd7 inhibits Sema3a expression. Second, using a Xenopus CHARGE model, we show that human SEMA3A rescues Chd7 loss of function. Third, to elucidate if SEMA3A mutations in addition to CHD7 mutations also contribute to the severity of the CHARGE phenotype, we screened 31 CHD7-positive patients and identified one patient with a heterozygous non-synonymous SEMA3A variant, c.2002A>G (p.I668V). By analyzing protein expression and processing, we did not observe any differences of the p.I668V variant compared with wild-type SEMA3A, while a pathogenic SEMA3A variant p.R66W recently described in a patient with Kallmann syndrome did affect protein secretion. Furthermore, the p.I668V variant, but not the pathogenic p.R66W variant, rescues Chd7 loss of function in Xenopus, indicating that the p.I668V variant is likely benign. Thus, SEMA3A is part of an epigenetic loop that plays a role in the pathogenesis of CHARGE syndrome, however, it seems not to act as a common direct modifier.


Assuntos
Síndrome CHARGE/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética , Crista Neural/metabolismo , Semaforina-3A/genética , Animais , Síndrome CHARGE/metabolismo , Síndrome CHARGE/patologia , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Embrião não Mamífero , Teste de Complementação Genética , Células HEK293 , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Síndrome de Kallmann/genética , Síndrome de Kallmann/metabolismo , Síndrome de Kallmann/patologia , Mutação , Crista Neural/patologia , Regiões Promotoras Genéticas , Semaforina-3A/metabolismo , Índice de Gravidade de Doença , Xenopus laevis
6.
Hum Genet ; 139(11): 1363-1379, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32424618

RESUMO

We report truncating de novo variants in specific exons of FBRSL1 in three unrelated children with an overlapping syndromic phenotype with respiratory insufficiency, postnatal growth restriction, microcephaly, global developmental delay and other malformations. The function of FBRSL1 is largely unknown. Interestingly, mutations in the FBRSL1 paralogue AUTS2 lead to an intellectual disability syndrome (AUTS2 syndrome). We determined human FBRSL1 transcripts and describe protein-coding forms by Western blot analysis as well as the cellular localization by immunocytochemistry stainings. All detected mutations affect the two short N-terminal isoforms, which show a ubiquitous expression in fetal tissues. Next, we performed a Fbrsl1 knockdown in Xenopus laevis embryos to explore the role of Fbrsl1 during development and detected craniofacial abnormalities and a disturbance in neurite outgrowth. The aberrant phenotype in Xenopus laevis embryos could be rescued with a human N-terminal isoform, while the long isoform and the N-terminal isoform containing the mutation p.Gln163* isolated from a patient could not rescue the craniofacial defects caused by Fbrsl1 depletion. Based on these data, we propose that the disruption of the validated N-terminal isoforms of FBRSL1 at critical timepoints during embryogenesis leads to a hitherto undescribed complex neurodevelopmental syndrome.


Assuntos
Deficiência Intelectual/genética , Linfocinas/genética , Mutação/genética , Anormalidades Múltiplas/genética , Adolescente , Animais , Criança , Éxons/genética , Humanos , Masculino , Fenótipo , Isoformas de Proteínas/genética , Síndrome , Fatores de Transcrição/genética
7.
Dev Dyn ; 248(6): 465-476, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30980591

RESUMO

BACKGROUND: Kabuki syndrome is a haploinsufficient congenital multi-organ malformation syndrome, which frequently includes severe heart defects. Mutations in the histone H3K4 methyltransferase KMT2D have been identified as the main cause of Kabuki syndrome, however, the role of KMT2D in heart development remains to be characterized. RESULTS: Here we analyze the function of Kmt2d at different stages of Xenopus heart development. Xenopus Kmt2d is ubiquitously expressed at early stages of cardiogenesis, with enrichment in the anterior region including the cardiac precursor cells. Morpholino-mediated knockdown of Kmt2d led to hypoplastic hearts lacking the three-chambered structure. Analyzing different stages of cardiogenesis revealed that development of the first and second heart fields as well as cardiac differentiation were severely affected by loss of Kmt2d function. CONCLUSION: Kmt2d loss of function in Xenopus recapitulates the hypoplastic heart defects observed in Kabuki syndrome patients and shows that Kmt2d function is required for the establishment of the primary and secondary heart fields. Thus, Xenopus Kmt2d morphants can be a valuable tool to elucidate the etiology of the congenital heart defects associated with Kabuki syndrome.


Assuntos
Anormalidades Múltiplas/genética , Face/anormalidades , Coração/crescimento & desenvolvimento , Doenças Hematológicas/genética , Histona-Lisina N-Metiltransferase/fisiologia , Doenças Vestibulares/genética , Proteínas de Xenopus/fisiologia , Xenopus laevis/crescimento & desenvolvimento , Animais , Cardiopatias Congênitas/genética , Histona-Lisina N-Metiltransferase/genética , Mutação com Perda de Função , Proteínas de Xenopus/genética
8.
J Cell Sci ; 130(11): 1890-1903, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28420671

RESUMO

Protein tyrosine kinase 7 (PTK7) is an evolutionarily conserved transmembrane receptor with important roles in embryonic development and disease. Originally identified as a gene upregulated in colon cancer, it was later shown to regulate planar cell polarity (PCP) and directional cell movement. PTK7 is a Wnt co-receptor; however, its role in Wnt signaling remains controversial. Here, we find evidence that places PTK7 at the intersection of canonical and non-canonical Wnt signaling pathways. In presence of canonical Wnt ligands PTK7 is subject to caveolin-mediated endocytosis, while it is unaffected by non-canonical Wnt ligands. PTK7 endocytosis is dependent on the presence of the PTK7 co-receptor Fz7 (also known as Fzd7) and results in lysosomal degradation of PTK7. As we previously observed that PTK7 activates non-canonical PCP Wnt signaling but inhibits canonical Wnt signaling, our data suggest a mutual inhibition of canonical and PTK7 Wnt signaling. PTK7 likely suppresses canonical Wnt signaling by binding canonical Wnt ligands thereby preventing their interaction with Wnt receptors that would otherwise support canonical Wnt signaling. Conversely, if canonical Wnt proteins interact with the PTK7 receptor, they induce its internalization and degradation.


Assuntos
Caveolina 1/genética , Moléculas de Adesão Celular/genética , Receptores Proteína Tirosina Quinases/genética , Proteínas Wnt/genética , Via de Sinalização Wnt , Proteína Wnt3A/genética , Animais , Caveolina 1/metabolismo , Moléculas de Adesão Celular/metabolismo , Movimento Celular , Clatrina/genética , Clatrina/metabolismo , Embrião não Mamífero , Endocitose , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ligantes , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Células MCF-7 , Ligação Proteica , Estabilidade Proteica , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt3A/metabolismo , Xenopus laevis , beta Catenina/genética , beta Catenina/metabolismo
9.
Dev Biol ; 417(1): 77-90, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27341758

RESUMO

Canonical Wnt signaling plays a dominant role in the development of the neural crest (NC), a highly migratory cell population that generates a vast array of cell types. Canonical Wnt signaling is required for NC induction as well as differentiation, however its role in NC migration remains largely unknown. Analyzing nuclear localization of ß-catenin as readout for canonical Wnt activity, we detect nuclear ß-catenin in premigratory but not migratory Xenopus NC cells suggesting that canonical Wnt activity has to decrease to basal levels to enable NC migration. To define a possible function of canonical Wnt signaling in Xenopus NC migration, canonical Wnt signaling was modulated at different time points after NC induction. This was accomplished using either chemical modulators affecting ß-catenin stability or inducible glucocorticoid fusion constructs of Lef/Tcf transcription factors. In vivo analysis of NC migration by whole mount in situ hybridization demonstrates that ectopic activation of canonical Wnt signaling inhibits cranial NC migration. Further, NC transplantation experiments confirm that this effect is tissue-autonomous. In addition, live-cell imaging in combination with biophysical data analysis of explanted NC cells confirms the in vivo findings and demonstrates that modulation of canonical Wnt signaling affects the ability of NC cells to perform single cell migration. Thus, our data support the hypothesis that canonical Wnt signaling needs to be tightly controlled to enable migration of NC cells.


Assuntos
Movimento Celular/fisiologia , Crista Neural/citologia , Fatores de Transcrição TCF/metabolismo , Fator 3 de Transcrição/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Hibridização In Situ , Indóis/farmacologia , Organogênese/fisiologia , Oximas/farmacologia , Crânio/embriologia , beta Catenina/metabolismo
10.
Am J Med Genet C Semin Med Genet ; 175(4): 478-486, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29082625

RESUMO

Neural crest cells are highly migratory pluripotent cells that give rise to diverse derivatives including cartilage, bone, smooth muscle, pigment, and endocrine cells as well as neurons and glia. Abnormalities in neural crest-derived tissues contribute to the etiology of CHARGE syndrome, a complex malformation disorder that encompasses clinical symptoms like coloboma, heart defects, atresia of the choanae, retarded growth and development, genital hypoplasia, ear anomalies, and deafness. Mutations in the chromodomain helicase DNA-binding protein 7 (CHD7) gene are causative of CHARGE syndrome and loss-of-function data in different model systems have firmly established a role of CHD7 in neural crest development. Here, we will summarize our current understanding of the function of CHD7 in neural crest development and discuss possible links of CHARGE syndrome to other developmental disorders.


Assuntos
Síndrome CHARGE/diagnóstico , Síndrome CHARGE/etiologia , Crista Neural/anormalidades , Fenótipo , Trifosfato de Adenosina/metabolismo , Animais , Síndrome CHARGE/metabolismo , Montagem e Desmontagem da Cromatina , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Humanos , Complexos Multiproteicos/metabolismo , Mutação , Ligação Proteica
11.
Development ; 141(18): 3505-16, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25183869

RESUMO

During vertebrate gastrulation, a complex set of mass cellular rearrangements shapes the embryonic body plan and appropriately positions the organ primordia. In zebrafish and Xenopus, convergence and extension (CE) movements simultaneously narrow the body axis mediolaterally and elongate it from head to tail. This process is governed by polarized cell behaviors that are coordinated by components of the non-canonical, ß-catenin-independent Wnt signaling pathway, including Wnt5b and the transmembrane planar cell polarity (PCP) protein Vangl2. However, the intracellular events downstream of Wnt/PCP signals are not fully understood. Here, we show that zebrafish mutated in colorectal cancer (mcc), which encodes an evolutionarily conserved PDZ domain-containing putative tumor suppressor, is required for Wnt5b/Vangl2 signaling during gastrulation. Knockdown of mcc results in CE phenotypes similar to loss of vangl2 and wnt5b, whereas overexpression of mcc robustly rescues the depletion of wnt5b, vangl2 and the Wnt5b tyrosine kinase receptor ror2. Biochemical experiments establish a direct physical interaction between Mcc and the Vangl2 cytoplasmic tail. Lastly, CE defects in mcc morphants are suppressed by downstream activation of RhoA and JNK. Taken together, our results identify Mcc as a novel intracellular effector of non-canonical Wnt5b/Vangl2/Ror2 signaling during vertebrate gastrulation.


Assuntos
Gastrulação/fisiologia , Genes MCC/genética , Morfogênese/fisiologia , Via de Sinalização Wnt/fisiologia , Peixe-Zebra/embriologia , Animais , Western Blotting , Polaridade Celular/fisiologia , Imunoprecipitação , Hibridização In Situ , Luciferases , Proteínas de Membrana/metabolismo , Microscopia Confocal , Domínios PDZ/genética , Reação em Cadeia da Polimerase , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt-5a , Proteínas de Peixe-Zebra/metabolismo
12.
EMBO J ; 30(18): 3729-40, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21772251

RESUMO

Wnt signalling is an evolutionarily conserved pathway that directs cell-fate determination and morphogenesis during metazoan development. Wnt ligands are secreted glycoproteins that act at a distance causing a wide range of cellular responses from stem cell maintenance to cell death and cell proliferation. How Wnt ligands cause such disparate responses is not known, but one possibility is that different outcomes are due to different receptors. Here, we examine PTK7/Otk, a transmembrane receptor that controls a variety of developmental and physiological processes including the regulation of cell polarity, cell migration and invasion. PTK7/Otk co-precipitates canonical Wnt3a and Wnt8, indicating a role in Wnt signalling, but PTK7 inhibits rather than activates canonical Wnt activity in Xenopus, Drosophila and luciferase reporter assays. Loss of PTK7 function activates canonical Wnt signalling and epistasis experiments place PTK7 at the level of the Frizzled receptor. In Drosophila, Otk interacts with Wnt4 and opposes canonical Wnt signalling in embryonic patterning. We propose a model where PTK7/Otk functions in non-canonical Wnt signalling by turning off the canonical signalling branch.


Assuntos
Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas/metabolismo , Mapeamento de Interação de Proteínas , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Animais , Drosophila , Imunoprecipitação , Modelos Biológicos , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Xenopus , Proteínas de Xenopus/metabolismo
13.
Hum Genet ; 133(8): 997-1009, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24728844

RESUMO

Heterozygous loss of function mutations in CHD7 (chromodomain helicase DNA-binding protein 7) lead to CHARGE syndrome, a complex developmental disorder affecting craniofacial structures, cranial nerves and several organ systems. Recently, it was demonstrated that CHD7 is essential for the formation of multipotent migratory neural crest cells, which migrate from the neural tube to many regions of the embryo, where they differentiate into various tissues including craniofacial and heart structures. So far, only few CHD7 target genes involved in neural crest cell development have been identified and the role of CHD7 in neural crest cell guidance and the regulation of mesenchymal-epithelial transition are unknown. Therefore, we undertook a genome-wide microarray expression analysis on wild-type and CHD7 deficient (Chd7 (Whi/+) and Chd7 (Whi/Whi)) mouse embryos at day 9.5, a time point of neural crest cell migration. We identified 98 differentially expressed genes between wild-type and Chd7 (Whi/Whi) embryos. Interestingly, many misregulated genes are involved in neural crest cell and axon guidance such as semaphorins and ephrin receptors. By performing knockdown experiments for Chd7 in Xenopus laevis embryos, we found abnormalities in the expression pattern of Sema3a, a protein involved in the pathogenesis of Kallmann syndrome, in vivo. In addition, we detected non-synonymous SEMA3A variations in 3 out of 45 CHD7-negative CHARGE patients. In summary, we discovered for the first time that Chd7 regulates genes involved in neural crest cell guidance, demonstrating a new aspect in the pathogenesis of CHARGE syndrome. Furthermore, we showed for Sema3a a conserved regulatory mechanism across different species, highlighting its significance during development. Although we postulated that the non-synonymous SEMA3A variants which we found in CHD7-negative CHARGE patients alone are not sufficient to produce the phenotype, we suggest an important modifier role for SEMA3A in the pathogenesis of this multiple malformation syndrome.


Assuntos
Anormalidades Múltiplas/genética , Biomarcadores/metabolismo , Síndrome CHARGE/genética , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Mutação/genética , Animais , Western Blotting , Síndrome CHARGE/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Hibridização In Situ , Masculino , Camundongos , Camundongos Knockout , Crista Neural , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
14.
Development ; 138(7): 1321-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21350015

RESUMO

RACK1 is an evolutionarily conserved intracellular adaptor protein that is involved in a wide range of processes including cell adhesion and migration; however, its role in vertebrate development is largely unknown. Here, we identify RACK1 as a novel interaction partner of PTK7, a regulator of planar cell polarity that is necessary for neural tube closure. RACK1 is likewise required for Xenopus neural tube closure. Further, explant assays suggest that PTK7 and RACK1 are required for neural convergent extension. Mechanistically, RACK1 is necessary for the PTK7-mediated membrane localization of Dishevelled (DSH). RACK1 facilitates the PTK7-DSH interaction by recruiting PKCδ1, a known effector of DSH membrane translocation. These data place RACK1 in a novel signaling cascade that translocates DSH to the plasma membrane and regulates vertebrate neural tube closure.


Assuntos
Tubo Neural/metabolismo , Neurulação/fisiologia , Peptídeos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Western Blotting , Polaridade Celular , Proteínas Desgrenhadas , Imunoprecipitação , Tubo Neural/embriologia , Peptídeos/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores de Quinase C Ativada , Xenopus , Proteínas de Xenopus/genética
15.
Cells Dev ; 177: 203899, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38160720

RESUMO

Directed cell migration requires a local fine-tuning of Rho GTPase activity to control protrusion formation, cell-cell contraction, and turnover of cellular adhesions. The Rho guanine nucleotide exchange factor (GEF) TRIO is ideally suited to control RhoGTPase activity because it combines two distinct catalytic domains to control Rac1 and RhoA activity in one molecule. However, at the cellular level, this molecular feature also requires a tight spatiotemporal control of TRIO activity. Here, we analyze the dynamic localization of Trio in Xenopus cranial neural crest (NC) cells, where we have recently shown that Trio is required for protrusion formation and migration. Using live cell imaging, we find that the GEF2 domain, but not the GEF1 domain of Trio, dynamically colocalizes with EB3 at microtubule plus-ends. Microtubule-mediated transport of Trio appears to be relevant for its function in NC migration, as a mutant GEF2 construct lacking the SxIP motif responsible for microtubule plus-end localization was significantly impaired in its ability to rescue the Trio loss-of-function phenotype compared to wild-type GEF2. Furthermore, by analyzing microtubule dynamics in migrating NC cells, we observed that loss of Trio function stabilized microtubules at cell-cell contact sites compared to controls, whereas they were destabilized at the leading edge of NC cells. Our data suggest that Trio is transported by microtubules to distinct subcellular locations where it has different functions in controlling microtubule stability, cell morphology, and cell-cell interaction during directed NC migration.


Assuntos
Microtúbulos , Crista Neural , Animais , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Crista Neural/metabolismo , Microtúbulos/metabolismo , Xenopus laevis , Movimento Celular/genética
16.
Dis Model Mech ; 17(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38501224

RESUMO

De novo truncating variants in fibrosin-like 1 (FBRSL1), a member of the AUTS2 gene family, cause a disability syndrome, including organ malformations such as heart defects. Here, we use Xenopus laevis to investigate whether Fbrsl1 plays a role in heart development. Xenopus laevis fbrsl1 is expressed in tissues relevant for heart development, and morpholino-mediated knockdown of Fbrsl1 results in severely hypoplastic hearts. Our data suggest that Fbrsl1 is required for the development of the first heart field, which contributes to the ventricle and the atria, but not for the second heart field, which gives rise to the outflow tract. The morphant heart phenotype could be rescued using a human N-terminal FBRSL1 isoform that contains an alternative exon, but lacks the AUTS2 domain. N-terminal isoforms carrying patient variants failed to rescue. Interestingly, a long human FBRSL1 isoform, harboring the AUTS2 domain, also did not rescue the morphant heart defects. Thus, our data suggest that different FBRSL1 isoforms may have distinct functions and that only the short N-terminal isoform, appears to be critical for heart development.


Assuntos
Cardiopatias Congênitas , Coração , Proteínas de Xenopus , Xenopus laevis , Animais , Humanos , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Coração/embriologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Fenótipo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Xenopus laevis/embriologia , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética
17.
Nat Commun ; 14(1): 472, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709316

RESUMO

Specialized chromatin-binding proteins are required for DNA-based processes during development. We recently established PWWP2A as a direct histone variant H2A.Z interactor involved in mitosis and craniofacial development. Here, we identify the H2A.Z/PWWP2A-associated protein HMG20A as part of several chromatin-modifying complexes, including NuRD, and show that it localizes to distinct genomic regulatory regions. Hmg20a depletion causes severe head and heart developmental defects in Xenopus laevis. Our data indicate that craniofacial malformations are caused by defects in neural crest cell (NCC) migration and cartilage formation. These developmental failures are phenocopied in Hmg20a-depleted mESCs, which show inefficient differentiation into NCCs and cardiomyocytes (CM). Consequently, loss of HMG20A, which marks open promoters and enhancers, results in chromatin accessibility changes and a striking deregulation of transcription programs involved in epithelial-mesenchymal transition (EMT) and differentiation processes. Collectively, our findings implicate HMG20A as part of the H2A.Z/PWWP2A/NuRD-axis and reveal it as a key modulator of intricate developmental transcription programs that guide the differentiation of NCCs and CMs.


Assuntos
Cromatina , Histonas , Diferenciação Celular/genética , Cromatina/genética , Transição Epitelial-Mesenquimal , Histonas/genética , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Camundongos , Xenopus laevis
18.
Arch Biochem Biophys ; 524(1): 71-6, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22230326

RESUMO

PTK7 (protein tyrosine kinase 7) is an evolutionarily conserved transmembrane receptor with functions in various processes ranging from embryonic morphogenesis to epidermal wound repair. Here, we review recent findings indicating that PTK7 is a versatile co-receptor that functions as a molecular switch in Wnt, Semaphorin/Plexin and VEGF signaling pathways. We focus in particular on the role of PTK7 in Wnt signaling, as recent data indicate that PTK7 acts as a Wnt co-receptor, which activates the planar cell polarity pathway, but inhibits canonical Wnt signaling.


Assuntos
Comunicação Celular , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Wnt/metabolismo , Animais , Polaridade Celular , Humanos , Metaloproteinases da Matriz/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais
19.
Front Cell Dev Biol ; 9: 779009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805182

RESUMO

Truncating variants in specific exons of Fibrosin-like protein 1 (FBRSL1) were recently reported to cause a novel malformation and intellectual disability syndrome. The clinical spectrum includes microcephaly, facial dysmorphism, cleft palate, skin creases, skeletal anomalies and contractures, postnatal growth retardation, global developmental delay as well as respiratory problems, hearing impairment and heart defects. The function of FBRSL1 is largely unknown, but pathogenic variants in the FBRSL1 paralog Autism Susceptibility Candidate 2 (AUTS2) are causative for an intellectual disability syndrome with microcephaly (AUTS2 syndrome). Some patients with AUTS2 syndrome also show additional symptoms like heart defects and contractures overlapping with the phenotype presented by patients with FBRSL1 mutations. For AUTS2, a dual function, depending on different isoforms, was described and suggested for FBRSL1. Both, nuclear FBRSL1 and AUTS2 are components of the Polycomb subcomplexes PRC1.3 and PRC1.5. These complexes have essential roles in developmental processes, cellular differentiation and proliferation by regulating gene expression via histone modification. In addition, cytoplasmic AUTS2 controls neural development, neuronal migration and neurite extension by regulating the cytoskeleton. Here, we review recent data on FBRSL1 in respect to previously published data on AUTS2 to gain further insights into its molecular function, its role in development as well as its impact on human genetics.

20.
Biochem Biophys Res Commun ; 402(2): 402-7, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20946874

RESUMO

Members of the plexin protein family are known regulators of axon guidance, but recent data indicate that they have broader functions in the regulation of embryonic morphogenesis. Here we provide further evidence of this by showing that PlexinA1 is expressed in Xenopus neural crest cells and is required for their migration. PlexinA1 expression is detected in migrating cranial neural crest cells and knockdown of PlexinA1 expression using Morpholino oligonucleotides inhibits neural crest migration. PlexinA1 likely affects neural crest migration by interaction with PTK7, a regulator of planar cell polarity that is required for neural crest migration. PlexinA1 and PTK7 interact in immunoprecipitation assays and show phenotypic interaction in co-injection experiments. Considering that plexins and PTK7 have been shown to genetically interact in Drosophila axon guidance and chick cardiac morphogenesis, our data suggest that this interaction is evolutionary conserved and may be relevant for a broad range of morphogenetic events including the migration of neural crest cells in Xenopus laevis.


Assuntos
Movimento Celular , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Técnicas de Silenciamento de Genes , Proteínas do Tecido Nervoso/genética , Crista Neural/citologia , Proteínas de Xenopus/genética , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA