Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Echocardiography ; 41(2): e15766, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38340258

RESUMO

BACKGROUND: A previous multicenter study showed that longitudinal changes in standard cardiac functional parameters were associated with the development of cardiomyopathy in childhood cancer survivors (CCS). Evaluation of the relationship between global longitudinal strain (GLS) changes and cardiomyopathy risk was limited, largely due to lack of quality apical 2- and 3-chamber views in addition to 4-chamber view. We sought to determine whether apical 4-chamber longitudinal strain (A4LS) alone can serve as a suitable surrogate for GLS in this population. METHODS: A4LS and GLS were measured in echocardiograms with acceptable apical 2-, 3-, and 4-chamber views. Correlation was evaluated using Pearson and Spearman coefficients, and agreement was evaluated with Bland-Altman plots. The ability of A4LS to identify normal and abnormal values compared to GLS as the reference was evaluated. RESULTS: Among a total of 632 reviewed echocardiograms, we identified 130 echocardiograms from 56 patients with adequate views (38% female; mean age at cancer diagnosis 8.3 years; mean follow-up 9.4 years). Correlation coefficients between A4LS and GLS were .89 (Pearson) and .85 (Spearman), with Bland-Altman plot of GLS-A4LS showing a mean difference of -.71 ± 1.8. Compared with GLS as the gold standard, A4LS had a sensitivity of 86% (95% CI 79%-93%) and specificity of 82% (69%-95%) when using normal range cutoffs and 90% (82%-97%) and 70% (58%-81%) when using ±2 standard deviations. CONCLUSION: A4LS performs well when compared with GLS in this population. Given the more recent adoption of apical 2- and 3-chamber views in most pediatric echocardiography laboratories, A4LS is a reasonable stand-alone measurement in retrospective analyses of older study cohorts and echocardiogram biorepositories.


Assuntos
Sobreviventes de Câncer , Cardiomiopatias , Neoplasias , Disfunção Ventricular Esquerda , Criança , Feminino , Humanos , Masculino , Ecocardiografia , Neoplasias/complicações , Estudos Retrospectivos , Volume Sistólico , Função Ventricular Esquerda , Adolescente
2.
Front Cardiovasc Med ; 10: 1286241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107263

RESUMO

Background: Pediatric acute myeloid leukemia (AML) therapy is associated with substantial short- and long-term treatment-related cardiotoxicity mainly due to high-dose anthracycline exposure. Early left ventricular systolic dysfunction (LVSD) compromises anthracycline delivery and is associated with inferior event-free and overall survival in de novo pediatric AML. Thus, effective cardioprotective strategies and cardiotoxicity risk predictors are critical to optimize cancer therapy delivery and enable early interventions to prevent progressive LVSD. While dexrazoxane-based cardioprotection reduces short-term cardiotoxicity without compromising cancer survival, liposomal anthracycline formulations have the potential to mitigate cardiotoxicity while improving antitumor efficacy. This overview summarizes the rationale and methodology of cardiac substudies within AAML1831, a randomized Children's Oncology Group Phase 3 study of CPX-351, a liposomal formulation of daunorubicin and cytarabine, in comparison with standard daunorubicin/cytarabine with dexrazoxane in the treatment of de novo pediatric AML. Methods/design: Children (age <22 years) with newly diagnosed AML were enrolled and randomized to CPX-351-containing induction 1 and 2 (Arm A) or standard daunorubicin and dexrazoxane-containing induction (Arm B). Embedded cardiac correlative studies aim to compare the efficacy of this liposomal anthracycline formulation to dexrazoxane for primary prevention of cardiotoxicity by detailed core lab analysis of standardized echocardiograms and serial cardiac biomarkers throughout AML therapy and in follow-up. In addition, AAML1831 will assess the ability of early changes in sensitive echo indices (e.g., global longitudinal strain) and cardiac biomarkers (e.g., troponin and natriuretic peptides) to predict subsequent LVSD. Finally, AAML1831 establishes expert consensus-based strategies in cardiac monitoring and anthracycline dose modification to balance the potentially competing priorities of cardiotoxicity reduction with optimal leukemia therapy. Discussion: This study will inform diagnostic, prognostic, preventative, and treatment strategies regarding cardiotoxicity during pediatric AML therapy. Together, these measures have the potential to improve leukemia-free and overall survival and long-term cardiovascular health in children with AML. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT04293562.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA