Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Gene Med ; 26(7): e3711, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967638

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of upper and lower motor neurons with an unknown etiology. The difficulty of recovering biological material from patients led to employ lymphoblastoid cell lines (LCLs) as a model for ALS because many pathways, typically located in neurons, are also activated in these cells. METHODS: To investigate the expression of coding and long non-coding RNAs in LCLs, a transcriptomic profiling of sporadic ALS (SALS) and mutated patients (FUS, TARDBP, C9ORF72 and SOD1) and matched controls was realized. Thus, differentially expressed genes (DEGs) were investigated among the different subgroups of patients. Peripheral blood mononuclear cells (PBMCs) were isolated and immortalized into LCLs via Epstein-Barr virus infection; RNA was extracted, and RNA-sequencing analysis was performed. RESULTS: Gene expression profiles of LCLs were genetic-background-specific; indeed, only 12 genes were commonly deregulated in all groups. Nonetheless, pathways enriched by DEGs in each group were also compared, and a total of 89 Kyoto Encyclopedia of Genes and Genomes (KEGG) terms were shared among all patients. Eventually, the similarity of affected pathways was also assessed when our data were matched with a transcriptomic profile realized in the PBMCs of the same patients. CONCLUSIONS: We conclude that LCLs are a good model for the study of RNA deregulation in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Perfilação da Expressão Gênica , Mutação , Transcriptoma , Humanos , Esclerose Lateral Amiotrófica/genética , Feminino , Masculino , Pessoa de Meia-Idade , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Leucócitos Mononucleares/metabolismo , Superóxido Dismutase-1/genética , Linhagem Celular , Idoso , Regulação da Expressão Gênica , Proteínas de Ligação a DNA , Proteína FUS de Ligação a RNA
2.
Environ Res ; 249: 118323, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336161

RESUMO

Telomere length (TL) is a biomarker for cellular senescence and TL erosion is predictive of the risk for age-related diseases. Despite being genetically determined at birth, TL may be susceptible to modifications through epigenetic mechanisms. Pollutant agents are considered one of the major threats to both human and planetary health. Their ability to cross the placental barrier and induce oxidative stress in fetal cells is particularly concerning and it may be associated with early TL erosion. In consideration of the timely relevance of this topic, we conducted a literature review on the impact of prenatal exposure to pollutant agents on newborn TL. The search yielded a total of 1099 records, of which only 32 met the inclusion criteria for the review. These criteria included the participation of human subjects, a longitudinal design or collection of longitudinal data, reporting of original TL data, and a focus on exposure to pollutant agents. The majority of the studies reported a significant inverse association between prenatal exposure to pollutant agents and TL. Furthermore, the second trimester of pregnancy emerged as a special sensitive period for the occurrence of pollutant agent-driven TL modifications. Sex differences were inconsistently reported across studies. This review contributes to highlighting biochemical pathways for the threats of environmental pollution to human health. Future research is warranted to further highlight potential buffering mechanisms.


Assuntos
Poluentes Ambientais , Humanos , Gravidez , Feminino , Poluentes Ambientais/toxicidade , Telômero/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Exposição Ambiental/efeitos adversos , Recém-Nascido , Exposição Materna/efeitos adversos , Poluição Ambiental/efeitos adversos
3.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473944

RESUMO

Oxidative stress (OS) and inflammation are two important and well-studied pathological hallmarks of neurodegenerative diseases (NDDs). Due to elevated oxygen consumption, the high presence of easily oxidizable polyunsaturated fatty acids and the weak antioxidant defenses, the brain is particularly vulnerable to oxidative injury. Uncertainty exists over whether these deficits contribute to the development of NDDs or are solely a consequence of neuronal degeneration. Furthermore, these two pathological hallmarks are linked, and it is known that OS can affect the inflammatory response. In this review, we will overview the last findings about these two pathways in the principal NDDs. Moreover, we will focus more in depth on amyotrophic lateral sclerosis (ALS) to understand how anti-inflammatory and antioxidants drugs have been used for the treatment of this still incurable motor neuron (MN) disease. Finally, we will analyze the principal past and actual clinical trials and the future perspectives in the study of these two pathological mechanisms.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo/fisiologia , Antioxidantes/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Inflamação/tratamento farmacológico
4.
Neurobiol Dis ; 178: 106030, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736597

RESUMO

BACKGROUND: Deregulation of transcription in the pathogenesis of sporadic Amyotrophic Lateral Sclerosis (sALS) is taking central stage with RNA-sequencing analyses from sALS patients tissues highlighting numerous deregulated long non-coding RNAs (lncRNAs). The oncogenic lncRNA ZEB1-AS1 is strongly downregulated in peripheral blood mononuclear cells of sALS patients. In addition, in cancer-derived cell lines, ZEB1-AS1 belongs to a negative feedback loop regulation with hsa-miR-200c, acting as a molecular sponge for this miRNA. The role of the lncRNA ZEB1-AS1 in sALS pathogenesis has not been characterized yet, and its study could help identifying a possible disease-modifying target. METHODS: the implication of the ZEB1-AS1/ZEB1/hsa-miR-200c/BMI1 pathway was investigated in multiple patients-derived cellular models (patients-derived peripheral blood mononuclear cells and induced pluripotent stem cells-derived neural stem cells) and in the neuroblastoma cell line SH-SY5Y, where its function was inhibited via RNA interference. Molecular techniques such as Real Time PCR, Western Blot and Immunofluorescence were used to assess the pathway dysregulation. RESULTS: Our results show a dysregulation of a signaling pathway involving ZEB1-AS1/hsa-miR-200c/ß-Catenin in peripheral blood mononuclear cells and in induced pluripotent stem cells-derived neural stem cells from sALS patients. These results were validated in vitro on the cell line SH-SY5Y with silenced expression of ZEB1-AS1. Moreover, we found an increase for ZEB1-AS1 during neural differentiation with an aberrant expression of ß-Catenin, highlighting also its aggregation and possible impact on neurite length. CONCLUSIONS: Our results support and describe the role of ZEB1-AS1 pathway in sALS and specifically in neuronal differentiation, suggesting that an impairment of ß-Catenin signaling and an alteration of the neuronal phenotype are taking place.


Assuntos
Esclerose Lateral Amiotrófica , MicroRNAs , Neuroblastoma , RNA Longo não Codificante , Humanos , Esclerose Lateral Amiotrófica/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Leucócitos Mononucleares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
5.
Dev Psychopathol ; : 1-11, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36855816

RESUMO

Maternal antenatal anxiety is an emerging risk factor for child emotional development. Both sex and epigenetic mechanisms, such as DNA methylation, may contribute to the embedding of maternal distress into emotional outcomes. Here, we investigated sex-dependent patterns in the association between antenatal maternal trait anxiety, methylation of the brain-derived neurotrophic factor gene (BDNF DNAm), and infant negative emotionality (NE). Mother-infant dyads (N = 276) were recruited at delivery. Maternal trait anxiety, as a marker of antenatal chronic stress exposure, was assessed soon after delivery using the Stait-Trait Anxiety Inventory (STAI-Y). Infants' BDNF DNAm at birth was assessed in 11 CpG sites in buccal cells whereas infants' NE was assessed at 3 (N = 225) and 6 months (N = 189) using the Infant Behavior Questionnaire-Revised (IBQ-R). Hierarchical linear analyses showed that higher maternal antenatal anxiety was associated with greater 6-month-olds' NE. Furthermore, maternal antenatal anxiety predicted greater infants' BDNF DNAm in five CpG sites in males but not in females. Higher methylation at these sites was associated with greater 3-to-6-month NE increase, independently of infants' sex. Maternal antenatal anxiety emerged as a risk factor for infant's NE. BDNF DNAm might mediate this effect in males. These results may inform the development of strategies to promote mothers and infants' emotional well-being.

6.
Genomics ; 113(6): 4039-4051, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34662711

RESUMO

The multitasking nature of lncRNAs allows them to play a central role in both physiological and pathological conditions. Often the same lncRNA can participate in different diseases. Specifically, the MYC-induced Long non-Coding RNA MINCR is upregulated in various cancer types, while downregulated in Amyotrophic Lateral Sclerosis patients. Therefore, this work aims to investigate MINCR potential mechanisms of action and its implications in cancer and neurodegeneration in relation to its expression levels in SH-SY5Y cells through RNA-sequencing approach. Our results show that MINCR overexpression causes massive alterations in cancer-related genes, leading to disruption in many fundamental processes, such as cell cycle and growth factor signaling. On the contrary, MINCR downregulation influences a small number of genes involved in different neurodegenerative disorders, mostly concerning RNA metabolism and inflammation. Thus, understanding the cause and functional consequences of MINCR deregulation gives important insights on potential pathogenetic mechanisms both in cancer and in neurodegeneration.


Assuntos
Neoplasias , RNA Longo não Codificante , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Oncogenes , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais
7.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628156

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease (NDD) that affects motor neurons, causing weakness, muscle atrophy and spasticity. Unfortunately, there are only symptomatic treatments available. Two important innovations in recent years are three-dimensional (3D) bioprinting and induced pluripotent stem cells (iPSCs). The aim of this work was to demonstrate the robustness of 3D cultures for the differentiation of stem cells for the study of ALS. We reprogrammed healthy and sALS peripheral blood mononuclear cells (PBMCs) in iPSCs and differentiated them in neural stem cells (NSCs) in 2D. NSCs were printed in 3D hydrogel-based constructs and subsequently differentiated first in motor neuron progenitors and finally in motor neurons. Every step of differentiation was tested for cell viability and characterized by confocal microscopy and RT-qPCR. Finally, we tested the electrophysiological characteristics of included NSC34. We found that NSCs maintained good viability during the 3D differentiation. Our results suggest that the hydrogel does not interfere with the correct differentiation process or with the electrophysiological features of the included cells. Such evidence confirmed that 3D bioprinting can be considered a good model for the study of ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/patologia , Humanos , Hidrogéis/farmacologia , Leucócitos Mononucleares/patologia
8.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269723

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by the progressive loss of lower motor neurons, weakness and muscle atrophy. ALS lacks an effective cure and diagnosis is often made by exclusion. Thus, it is imperative to search for biomarkers. Biomarkers can help in understanding ALS pathomechanisms, identification of targets for treatment and development of effective therapies. Peripheral blood mononuclear cells (PBMCs) represent a valid source for biomarkers compared to cerebrospinal fluid, as they are simple to collect, and to plasma, because of the possibility of detecting lower expressed proteins. They are a reliable model for patients' stratification. This review provides an overview on PBMCs as a potential source of biomarkers in ALS. We focused on altered RNA metabolism (coding/non-coding RNA), including RNA processing, mRNA stabilization, transport and translation regulation. We addressed protein abnormalities (aggregation, misfolding and modifications); specifically, we highlighted that SOD1 appears to be the most characterizing protein in ALS. Finally, we emphasized the correlation between biological parameters and disease phenotypes, as regards prognosis, severity and clinical features. In conclusion, even though further studies are needed to standardize the use of PBMCs as a tool for biomarker investigation, they represent a promising approach in ALS research.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Biomarcadores/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/metabolismo
9.
Neurobiol Dis ; 148: 105211, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271327

RESUMO

The neuronal RNA-binding protein (RBP) HuD plays an important role in brain development, synaptic plasticity and neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD). Bioinformatics analysis of the human SOD1 mRNA 3' untranslated region (3'UTR) demonstrated the presence of HuD binding adenine-uridine (AU)-rich instability-conferring elements (AREs). Using differentiated SH-SY5Y cells along with brain tissues from sporadic amyotrophic lateral sclerosis (sALS) patients, we assessed HuD-dependent regulation of SOD1 mRNA. In vitro binding and mRNA decay assays demonstrate that HuD specifically binds to SOD1 ARE motifs promoting mRNA stabilization. In SH-SY5Y cells, overexpression of full-length HuD increased SOD1 mRNA and protein levels while a dominant negative form of the RBP downregulated its expression. HuD regulation of SOD1 mRNA was also found to be oxidative stress (OS)-dependent, as shown by the increased HuD binding and upregulation of this mRNA after H2O2 exposure. This treatment also induced a shift in alternative polyadenylation (APA) site usage in SOD1 3'UTR, increasing the levels of a long variant bearing HuD binding sites. The requirement of HuD for SOD1 upregulation during oxidative damage was validated using a specific siRNA that downregulated HuD protein levels to 36% and prevented upregulation of SOD1 and 91 additional genes. In the motor cortex from sALS patients, we found increases in SOD1 and HuD mRNAs and proteins, accompanied by greater HuD binding to this mRNA as confirmed by RNA-immunoprecipitation (RIP) assays. Altogether, our results suggest a role of HuD in the post-transcriptional regulation of SOD1 expression during ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína Semelhante a ELAV 4/genética , Regulação da Expressão Gênica/genética , Córtex Motor/metabolismo , Neuroblastoma/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/genética , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/metabolismo , Linhagem Celular Tumoral , Proteína Semelhante a ELAV 4/metabolismo , Humanos , RNA Mensageiro/metabolismo , Superóxido Dismutase-1/metabolismo
10.
Int J Mol Sci ; 21(9)2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375302

RESUMO

Neurodegenerative disorders (i.e., Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and spinal cord injury) represent a great problem worldwide and are becoming prevalent because of the increasing average age of the population. Despite many studies having focused on their etiopathology, the exact cause of these diseases is still unknown and until now, there are only symptomatic treatments. Biomaterials have become important not only for the study of disease pathogenesis, but also for their application in regenerative medicine. The great advantages provided by biomaterials are their ability to mimic the environment of the extracellular matrix and to allow the growth of different types of cells. Biomaterials can be used as supporting material for cell proliferation to be transplanted and as vectors to deliver many active molecules for the treatments of neurodegenerative disorders. In this review, we aim to report the potentiality of biomaterials (i.e., hydrogels, nanoparticles, self-assembling peptides, nanofibers and carbon-based nanomaterials) by analyzing their use in the regeneration of neural and glial cells their role in axon outgrowth. Although further studies are needed for their use in humans, the promising results obtained by several groups leads us to suppose that biomaterials represent a potential therapeutic approach for the treatments of neurodegenerative disorders.


Assuntos
Materiais Biocompatíveis , Doenças Neurodegenerativas/terapia , Medicina Regenerativa , Animais , Materiais Biocompatíveis/química , Humanos , Nanoestruturas , Nanotecnologia/métodos , Regeneração Nervosa , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Nanomedicina Teranóstica
11.
Int J Mol Sci ; 21(24)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327559

RESUMO

Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by a progressive degeneration of the central or peripheral nervous systems. A central role of the RNA metabolism has emerged in these diseases, concerning mRNAs processing and non-coding RNAs biogenesis. We aimed to identify possible common grounds or differences in the dysregulated pathways of AD, PD, and ALS. To do so, we performed RNA-seq analysis to investigate the deregulation of both coding and long non-coding RNAs (lncRNAs) in ALS, AD, and PD patients and controls (CTRL) in peripheral blood mononuclear cells (PBMCs). A total of 293 differentially expressed (DE) lncRNAs and 87 mRNAs were found in ALS patients. In AD patients a total of 23 DE genes emerged, 19 protein coding genes and four lncRNAs. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses, we found common affected pathways and biological processes in ALS and AD. In PD patients only five genes were found to be DE. Our data brought to light the importance of lncRNAs and mRNAs regulation in three principal neurodegenerative disorders, offering starting points for new investigations on deregulated pathogenic mechanisms.


Assuntos
Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Doença de Parkinson/metabolismo , Doença de Alzheimer/genética , Esclerose Lateral Amiotrófica/genética , Humanos , Doença de Parkinson/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , RNA-Seq
12.
RNA Biol ; 16(10): 1471-1485, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31345103

RESUMO

LncRNAs play crucial roles in cellular processes and their regulatory effects in the adult brain and neural stem cells (NSCs) remain to be entirely characterized. We report that 10 lncRNAs (LincENC1, FABL, lincp21, HAUNT, PERIL, lincBRN1a, lincBRN1b, HOTTIP, TUG1 and FENDRR) are expressed during murine NSCs differentiation and interact with the RNA-binding protein ELAVL1/HuR. Furthermore, we characterize the function of two of the deregulated lncRNAs, lincBRN1a and lincBRN1b, during NSCs' differentiation. Their inhibition leads to the induction of differentiation, with a concomitant decrease in stemness and an increase in neuronal markers, indicating that they exert key functions in neuronal cells differentiation. Furthermore, we describe here that HuR regulates their half-life, suggesting their synergic role in the differentiation process. We also identify six human homologs (PANTR1, TUG1, HOTTIP, TP53COR, ELDRR and FENDRR) of the mentioned 10 lncRNAs and we report their deregulation during human iPSCs differentiation into neurons. In conclusion, our results strongly indicate a key synergic role for lncRNAs and HuR in neuronal stem cells fate.


Assuntos
Diferenciação Celular/genética , Proteína Semelhante a ELAV 1/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , RNA Longo não Codificante/genética , Animais , Biomarcadores , Autorrenovação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Humanos , Imuno-Histoquímica , Masculino , Camundongos
13.
Int J Mol Sci ; 19(5)2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29751510

RESUMO

In 1993, Rosen and collaborators discovered that the gene encoding SOD1 has mutations in amyotrophic lateral sclerosis (ALS) patients; moreover, these mutations are found in the exon regions, suggesting that their toxic effects are the consequence of protein dysfunction with an increase of oxidative stress. While a clear genetic picture has been delineated, a more complex scenario has been ascribed to the SOD1 protein. On the one hand, some evidence sustains the hypothesis of an additionally toxic role for wild-type SOD1 (WT-SOD1) in the pathogenesis of sporadic ALS. On the other hand, our group identified a discrepancy among WT-SOD1 protein expression levels and mRNA in ALS sporadic patients, thus providing the hypothesis of a re-localization of the “missing” SOD1 in a different sub-cellular compartment, i.e., nucleus, or an aggregation/precipitation in the insoluble fraction. Moreover, our data also indicate an association between longer disease duration and higher amounts of soluble SOD1 within the nucleus, suggesting a possible defensive role of the protein in this compartment. Starting from this evidence, in this review we will attempt to resolve the “ambivalent” behavior of SOD1 in ALS disease and we will try to classify sporadic ALS patients according to a novel biological signature, i.e., SOD localization.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Núcleo Celular/metabolismo , Dano ao DNA/genética , Dano ao DNA/fisiologia , Humanos , Superóxido Dismutase-1/genética
14.
Int J Mol Sci ; 19(12)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30544711

RESUMO

In the last decade, the advances made into the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) led to great improvements towards their use as models of diseases. In particular, in the field of neurodegenerative diseases, iPSCs technology allowed to culture in vitro all types of patient-specific neural cells, facilitating not only the investigation of diseases' etiopathology, but also the testing of new drugs and cell therapies, leading to the innovative concept of personalized medicine. Moreover, iPSCs can be differentiated and organized into 3D organoids, providing a tool which mimics the complexity of the brain's architecture. Furthermore, recent developments in 3D bioprinting allowed the study of physiological cell-to-cell interactions, given by a combination of several biomaterials, scaffolds, and cells. This technology combines bio-plotter and biomaterials in which several types of cells, such as iPSCs or differentiated neurons, can be encapsulated in order to develop an innovative cellular model. IPSCs and 3D cell cultures technologies represent the first step towards the obtainment of a more reliable model, such as organoids, to facilitate neurodegenerative diseases' investigation. The combination of iPSCs, 3D organoids and bioprinting will also allow the development of new therapeutic approaches. Indeed, on the one hand they will lead to the development of safer and patient-specific drugs testing but, also, they could be developed as cell-therapy for curing neurodegenerative diseases with a regenerative medicine approach.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Neurológicos , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Neurônios/citologia , Organoides/citologia , Animais , Humanos
15.
Biochim Biophys Acta ; 1859(2): 315-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26619801

RESUMO

BACKGROUND: It is still unclear whether oxidative stress (OS) is a disease consequence or is directly involved in the etiology of neurodegenerative disorders (NDs) onset and/or progression; however, many of these conditions are associated with increased levels of oxidation markers and damaged cell components. Previously we demonstrated the accumulation of reactive oxygen species (ROS) and increased SOD1 gene expression in H2O2-treated SH-SY5Y cells, recapitulating pathological features of Amyotrophic Lateral Sclerosis (ALS). Since we observed a post-transcriptional regulation of SOD1 gene in this cellular model, we investigated the transcriptional regulation of SOD1 mRNA under oxidative stress (OS). RESULTS: In response to H2O2 treatment, PolII increased its association to SOD1 promoter. Electrophoretic mobility shift assays and mass spectrometry analyses on SOD1 promoter highlighted the formation of a transcriptional complex bound to the ARE sequences. Western Blotting experiments showed that in our in vitro model, H2O2 exposure increases Nrf2 expression in the nuclear fraction while immunoprecipitation confirmed its phosphorylation and release from Keap1 inhibition. However, H2O2 treatment did not modify Nrf2 binding on SOD1 promoter, which seems to be regulated by different transcription factors (TFs). CONCLUSIONS: Although our data suggest that SOD1 is transcriptionally regulated in response to OS, Nrf2 does not appear to associate with SOD1 promoter in this cellular model of neurodegeneration. Our results open new perspectives in the comprehension of two key antioxidant pathways involved in neurodegenerative disorders.


Assuntos
Esclerose Lateral Amiotrófica/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fator 2 Relacionado a NF-E2/biossíntese , Degeneração Neural/genética , Superóxido Dismutase/biossíntese , Transcrição Gênica , Esclerose Lateral Amiotrófica/patologia , Linhagem Celular , Regulação da Expressão Gênica/genética , Humanos , Peróxido de Hidrogênio/toxicidade , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Degeneração Neural/induzido quimicamente , Degeneração Neural/patologia , Estresse Oxidativo/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Mensageiro/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase-1
16.
Cell Prolif ; : e13627, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421110

RESUMO

The central nervous system (CNS) is surrounded by three membranes called meninges. Specialised fibroblasts, originating from the mesoderm and neural crest, primarily populate the meninges and serve as a binding agent. Our goal was to compare fibroblasts from meninges and skin obtained from the same human-aged donors, exploring their molecular and cellular characteristics related to CNS functions. We isolated meningeal fibroblasts (MFs) from brain donors and skin fibroblasts (SFs) from the same subjects. A functional analysis was performed measuring cell appearance, metabolic activity, and cellular orientation. We examined fibronectin, serpin H1, ß-III-tubulin, and nestin through qPCR and immunofluorescence. A whole transcriptome analysis was also performed to characterise the gene expression of MFs and SFs. MFs appeared more rapidly in the post-tissue processing, while SFs showed an elevated cellular metabolism and a well-defined cellular orientation. The four markers were mostly similar between the MFs and SFs, except for nestin, more expressed in MFs. Transcriptome analysis reveals significant differences, particularly in cyclic adenosine monophosphate (cAMP) metabolism and response to forskolin, both of which are upregulated in MFs. This study highlights MFs' unique characteristics, including the timing of appearance, metabolic activity, and gene expression patterns, particularly in cAMP metabolism and response to forskolin. These findings contribute to a deeper understanding of non-neuronal cells' involvement in CNS activities and potentially open avenues for therapeutic exploration.

17.
Front Endocrinol (Lausanne) ; 14: 1152237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998476

RESUMO

Introduction: Aicardi-Goutières Syndrome (AGS) is a rare encephalopathy with early onset that can be transmitted in both dominant and recessive forms. Its phenotypic covers a wide range of neurological and extraneurological symptoms. Nine genes that are all involved in nucleic acids (NAs) metabolism or signaling have so far been linked to the AGS phenotype. Recently, a link between autoimmune or neurodegenerative conditions and mitochondrial dysfunctions has been found. As part of the intricate system of epigenetic control, the mtDNA goes through various alterations. The displacement (D-loop) region represents one of the most methylated sites in the mtDNA. The term "mitoepigenetics" has been introduced as a result of increasing data suggesting that epigenetic processes may play a critical role in the control of mtDNA transcription and replication. Since we showed that RNASEH2B and RNASEH2A-mutated Lymphoblastoid Cell Lines (LCLs) derived from AGS patients had mitochondrial alterations, highlighting changes in the mtDNA content, the main objective of this study was to examine any potential methylation changes in the D-loop regulatory region of mitochondria and their relationship to the mtDNA copy number in peripheral blood cells of AGS patients with mutations in various AGS genes and healthy controls. Materials and methods: We collected blood samples from 25 AGS patients and we performed RT-qPCR to assess the mtDNA copy number and pyrosequencing to measure DNA methylation levels in the D-loop region. Results: Comparing AGS patients to healthy controls, D-loop methylation levels and mtDNA copy number increased significantly. We also observed that in AGS patients, the mtDNA copy number increased with age at sampling, but not the D-loop methylation levels, and there was no relationship between sex and mtDNA copy number. In addition, the D-loop methylation levels and mtDNA copy number in the AGS group showed a non-statistically significant positive relation. Conclusion: These findings, which contradict the evidence for an inverse relationship between D-loop methylation levels and mtDNA copy number, show that AGS patients have higher D-loop methylation levels than healthy control subjects. Additional research is needed to identify the function of these features in the etiology and course of AGS.


Assuntos
Variações do Número de Cópias de DNA , DNA Mitocondrial , DNA Mitocondrial/genética , Mitocôndrias/genética , Metilação de DNA
18.
Cells ; 11(8)2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35455952

RESUMO

Mitochondria alterations are present in tissues derived from patients and animal models, but no data are available for peripheral blood mononuclear cells (PBMCs) of ALS patients. This work aims to investigate mitophagy in PBMCs of sporadic (sALS) patients and how this pathway can be tuned by using small molecules. We found the presence of morphologically atypical mitochondria by TEM and morphological abnormalities by MitoTracker™. We found a decreased number of healthy mitochondria in sALS PBMCs and an impairment of mitophagy with western blot and immunofluorescence. After rapamycin treatment, we found a higher increase in the LC3 marker in sALS PBMCs, while after NH4Cl treatment, we found a lower increase in the LC3 marker. Finally, mTOR-independent autophagy induction with trehalose resulted in a significant decrease in the lysosomes level sALS PBMCs. Our data suggest that the presence of morphologically altered mitochondria and an inefficient turnover of damaged mitochondria in PBMCs of sALS patients rely on the impairment of the mitophagy pathway. We also found that the induction of the mTOR-independent autophagy pathway leads to a decrease in lysosomes level, suggesting a more sensitivity of sALS PBMCs to trehalose. Such evidence suggests that trehalose could represent an effective treatment for ALS patients.


Assuntos
Esclerose Lateral Amiotrófica , Mitofagia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Humanos , Leucócitos Mononucleares/metabolismo , Lisossomos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Trealose/metabolismo
19.
Cells ; 11(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35053410

RESUMO

Superoxide dismutase 1 (SOD1) is one of the causative genes associated with amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder. SOD1 aggregation contributes to ALS pathogenesis. A fraction of the protein is localized in the nucleus (nSOD1), where it seems to be involved in the regulation of genes participating in the oxidative stress response and DNA repair. Peripheral blood mononuclear cells (PBMCs) were collected from sporadic ALS (sALS) patients (n = 18) and healthy controls (n = 12) to perform RNA-sequencing experiments and differential expression analysis. Patients were stratified into groups with "high" and "low" levels of nSOD1. We obtained different gene expression patterns for high- and low-nSOD1 patients. Differentially expressed genes in high nSOD1 form a cluster similar to controls compared to the low-nSOD1 group. The pathways activated in high-nSOD1 patients are related to the upregulation of HSP70 molecular chaperones. We demonstrated that, in this condition, the DNA damage is reduced, even under oxidative stress conditions. Our findings highlight the importance of the nuclear localization of SOD1 as a protective mechanism in sALS patients.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/genética , Núcleo Celular/enzimologia , Perfilação da Expressão Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Leucócitos Mononucleares/metabolismo , RNA/genética , Superóxido Dismutase-1/metabolismo , Estudos de Casos e Controles , Dano ao DNA/genética , Regulação da Expressão Gênica , Ontologia Genética , Histonas/metabolismo , Humanos , Metilação , Análise de Componente Principal , RNA/metabolismo
20.
Biomedicines ; 9(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34356873

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease caused in 10% of cases by inherited mutations considered "familial". An ever-increasing amount of evidence is showing a fundamental role for RNA metabolism in ALS pathogenesis, and long non-coding RNAs (lncRNAs) appear to play a role in ALS development. Here, we aim to investigate the expression of a panel of lncRNAs (linc-Enc1, linc-Brn1a, linc-Brn1b, linc-p21, Hottip, Tug1, Eldrr, and Fendrr) which could be implicated in early phases of ALS. Via Real-Time PCR, we assessed their expression in a murine familial model of ALS (SOD1-G93A mouse) in brain and spinal cord areas of SOD1-G93A mice in comparison with that of B6.SJL control mice, in asymptomatic (week 8) and late-stage disease (week 18). We highlighted a specific area and pathogenetic-stage deregulation in each lncRNA, with linc-p21 being deregulated in all analyzed tissues. Moreover, we analyzed the expression of their human homologues in SH-SY5Y-SOD1-WT and SH-SY5Y-SOD1-G93A, observing a profound alteration in their expression. Interestingly, the lncRNAs expression in our ALS models often resulted opposite to that observed for the lncRNAs in cancer. These evidences suggest that lncRNAs could be novel disease-modifying agents, biomarkers, or pathways affected by ALS neurodegeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA