Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(9): 5179-5194, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647081

RESUMO

Transcription factor RBPJ is the central component in Notch signal transduction and directly forms a coactivator complex together with the Notch intracellular domain (NICD). While RBPJ protein levels remain constant in most tissues, dynamic expression of Notch target genes varies depending on the given cell-type and the Notch activity state. To elucidate dynamic RBPJ binding genome-wide, we investigated RBPJ occupancy by ChIP-Seq. Surprisingly, only a small set of the total RBPJ sites show a dynamic binding behavior in response to Notch signaling. Compared to static RBPJ sites, dynamic sites differ in regard to their chromatin state, binding strength and enhancer positioning. Dynamic RBPJ sites are predominantly located distal to transcriptional start sites (TSSs), while most static sites are found in promoter-proximal regions. Importantly, gene responsiveness is preferentially associated with dynamic RBPJ binding sites and this static and dynamic binding behavior is repeatedly observed across different cell types and species. Based on the above findings we used a machine-learning algorithm to predict Notch responsiveness with high confidence in different cellular contexts. Our results strongly support the notion that the combination of binding strength and enhancer positioning are indicative of Notch responsiveness.


Assuntos
Elementos Facilitadores Genéticos , Receptores Notch , Animais , Humanos , Camundongos , Sítios de Ligação , Cromatina/metabolismo , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Regulação da Expressão Gênica , Genômica/métodos , Aprendizado de Máquina , Regiões Promotoras Genéticas , Ligação Proteica , Receptores Notch/metabolismo , Receptores Notch/genética , Transdução de Sinais/genética , Sítio de Iniciação de Transcrição
2.
PLoS Genet ; 18(8): e1010335, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35951645

RESUMO

Notch signaling is a conserved pathway that converts extracellular receptor-ligand interactions into changes in gene expression via a single transcription factor (CBF1/RBPJ in mammals; Su(H) in Drosophila). In humans, RBPJ variants have been linked to Adams-Oliver syndrome (AOS), a rare autosomal dominant disorder characterized by scalp, cranium, and limb defects. Here, we found that a previously described Drosophila Su(H) allele encodes a missense mutation that alters an analogous residue found in an AOS-associated RBPJ variant. Importantly, genetic studies support a model that heterozygous Drosophila with the AOS-like Su(H) allele behave in an opposing manner to heterozygous flies with a Su(H) null allele, due to a dominant activity of sequestering either the Notch co-activator or the antagonistic Hairless co-repressor. Consistent with this model, AOS-like Su(H) and Rbpj variants have decreased DNA binding activity compared to wild type proteins, but these variants do not significantly alter protein binding to the Notch co-activator or the fly and mammalian co-repressors, respectively. Taken together, these data suggest a cofactor sequestration mechanism underlies AOS phenotypes associated with RBPJ variants, whereby the AOS-associated RBPJ allele encodes a protein with compromised DNA binding activity that retains cofactor binding, resulting in Notch target gene dysregulation.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Proteínas Correpressoras , DNA , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Displasia Ectodérmica , Humanos , Deformidades Congênitas dos Membros , Mamíferos/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Couro Cabeludo/metabolismo , Dermatoses do Couro Cabeludo/congênito , Crânio/metabolismo
3.
Nucleic Acids Res ; 50(14): 7925-7937, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35848919

RESUMO

Signal transduction pathways often involve transcription factors that promote activation of defined target gene sets. The transcription factor RBPJ is the central player in Notch signaling and either forms an activator complex with the Notch intracellular domain (NICD) or a repressor complex with corepressors like KYOT2/FHL1. The balance between these two antagonizing RBPJ-complexes depends on the activation state of the Notch receptor regulated by cell-to-cell interaction, ligand binding and proteolytic cleavage events. Here, we depleted RBPJ in mature T-cells lacking active Notch signaling and performed RNA-Seq, ChIP-Seq and ATAC-seq analyses. RBPJ depletion leads to upregulation of many Notch target genes. Ectopic expression of NICD1 activates several Notch target genes and enhances RBPJ occupancy. Based on gene expression changes and RBPJ occupancy we define four different clusters, either RBPJ- and/or Notch-regulated genes. Importantly, we identify early (Hes1 and Hey1) and late Notch-responsive genes (IL2ra). Similarly, to RBPJ depletion, interfering with transcriptional repression by squelching with cofactor KYOT2/FHL1, leads to upregulation of Notch target genes. Taken together, RBPJ is not only an essential part of the Notch co-activator complex but also functions as a repressor in a Notch-independent manner.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Receptores Notch , Linfócitos T , Regulação da Expressão Gênica , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo
4.
Nucleic Acids Res ; 50(22): 13083-13099, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36477367

RESUMO

The Notch pathway transmits signals between neighboring cells to elicit downstream transcriptional programs. Notch is a major regulator of cell fate specification, proliferation, and apoptosis, such that aberrant signaling leads to a pleiotropy of human diseases, including developmental disorders and cancers. The pathway signals through the transcription factor CSL (RBPJ in mammals), which forms an activation complex with the intracellular domain of the Notch receptor and the coactivator Mastermind. CSL can also function as a transcriptional repressor by forming complexes with one of several different corepressor proteins, such as FHL1 or SHARP in mammals and Hairless in Drosophila. Recently, we identified L3MBTL3 as a bona fide RBPJ-binding corepressor that recruits the repressive lysine demethylase LSD1/KDM1A to Notch target genes. Here, we define the RBPJ-interacting domain of L3MBTL3 and report the 2.06 Å crystal structure of the RBPJ-L3MBTL3-DNA complex. The structure reveals that L3MBTL3 interacts with RBPJ via an unusual binding motif compared to other RBPJ binding partners, which we comprehensively analyze with a series of structure-based mutants. We also show that these disruptive mutations affect RBPJ and L3MBTL3 function in cells, providing further insights into Notch mediated transcriptional regulation.


Assuntos
Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Animais , Humanos , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Histona Desmetilases/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/metabolismo , Proteínas Musculares/genética , Ligação Proteica , Receptores Notch/genética , Receptores Notch/metabolismo
5.
Mol Cancer ; 21(1): 191, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192757

RESUMO

BACKGROUND: In vivo gene editing of somatic cells with CRISPR nucleases has facilitated the generation of autochthonous mouse tumors, which are initiated by genetic alterations relevant to the human disease and progress along a natural timeline as in patients. However, the long and variable, orthotopic tumor growth in inner organs requires sophisticated, time-consuming and resource-intensive imaging for longitudinal disease monitoring and impedes the use of autochthonous tumor models for preclinical studies. METHODS: To facilitate a more widespread use, we have generated a reporter mouse that expresses a Cre-inducible luciferase from Gaussia princeps (GLuc), which is secreted by cells in an energy-consuming process and can be measured quantitatively in the blood as a marker for the viable tumor load. In addition, we have developed a flexible, complementary toolkit to rapidly assemble recombinant adenoviruses (AVs) for delivering Cre recombinase together with CRISPR nucleases targeting cancer driver genes. RESULTS: We demonstrate that intratracheal infection of GLuc reporter mice with CRISPR-AVs efficiently induces lung tumors driven by mutations in the targeted cancer genes and simultaneously activates the GLuc transgene, resulting in GLuc secretion into the blood by the growing tumor. GLuc blood levels are easily and robustly quantified in small-volume blood samples with inexpensive equipment, enable tumor detection already several months before the humane study endpoint and precisely mirror the kinetics of tumor development specified by the inducing gene combination. CONCLUSIONS: Our study establishes blood-based GLuc monitoring as an inexpensive, rapid, high-throughput and animal-friendly method to longitudinally monitor autochthonous tumor growth in preclinical studies.


Assuntos
Copépodes , Neoplasias Pulmonares , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Copépodes/genética , Copépodes/metabolismo , Edição de Genes , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Neoplasias Pulmonares/genética , Camundongos
6.
Nucleic Acids Res ; 48(7): 3496-3512, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32107550

RESUMO

Aberrant Notch signaling plays a pivotal role in T-cell acute lymphoblastic leukemia (T-ALL) and chronic lymphocytic leukemia (CLL). Amplitude and duration of the Notch response is controlled by ubiquitin-dependent proteasomal degradation of the Notch1 intracellular domain (NICD1), a hallmark of the leukemogenic process. Here, we show that HDAC3 controls NICD1 acetylation levels directly affecting NICD1 protein stability. Either genetic loss-of-function of HDAC3 or nanomolar concentrations of HDAC inhibitor apicidin lead to downregulation of Notch target genes accompanied by a local reduction of histone acetylation. Importantly, an HDAC3-insensitive NICD1 mutant is more stable but biologically less active. Collectively, these data show a new HDAC3- and acetylation-dependent mechanism that may be exploited to treat Notch1-dependent leukemias.


Assuntos
Histona Desacetilases/metabolismo , Leucemia/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Humanos , Leucemia/enzimologia , Lisina/metabolismo , Camundongos , Mutação , Peptídeos Cíclicos/farmacologia , Estabilidade Proteica , Receptor Notch1/química , Receptor Notch1/genética
7.
EMBO J ; 36(21): 3232-3249, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29030483

RESUMO

Notch signaling is an evolutionarily conserved signal transduction pathway that is essential for metazoan development. Upon ligand binding, the Notch intracellular domain (NOTCH ICD) translocates into the nucleus and forms a complex with the transcription factor RBPJ (also known as CBF1 or CSL) to activate expression of Notch target genes. In the absence of a Notch signal, RBPJ acts as a transcriptional repressor. Using a proteomic approach, we identified L3MBTL3 (also known as MBT1) as a novel RBPJ interactor. L3MBTL3 competes with NOTCH ICD for binding to RBPJ In the absence of NOTCH ICD, RBPJ recruits L3MBTL3 and the histone demethylase KDM1A (also known as LSD1) to the enhancers of Notch target genes, leading to H3K4me2 demethylation and to transcriptional repression. Importantly, in vivo analyses of the homologs of RBPJ and L3MBTL3 in Drosophila melanogaster and Caenorhabditis elegans demonstrate that the functional link between RBPJ and L3MBTL3 is evolutionarily conserved, thus identifying L3MBTL3 as a universal modulator of Notch signaling in metazoans.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Histona Desmetilases/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Neuroglia/metabolismo , Receptores Notch/genética , Animais , Evolução Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Sequência Conservada , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Histona Desmetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Neuroglia/citologia , Ligação Proteica , Domínios Proteicos , Receptores Notch/metabolismo , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
8.
Adv Exp Med Biol ; 1287: 9-30, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034023

RESUMO

The Notch signal transduction cascade requires cell-to-cell contact and results in the proteolytic processing of the Notch receptor and subsequent assembly of a transcriptional coactivator complex containing the Notch intracellular domain (NICD) and transcription factor RBPJ. In the absence of a Notch signal, RBPJ remains at Notch target genes and dampens transcriptional output. Like in other signaling pathways, RBPJ is able to switch from activation to repression by associating with corepressor complexes containing several chromatin-modifying enzymes. Here, we focus on the recent advances concerning RBPJ-corepressor functions, especially in regard to chromatin regulation. We put this into the context of one of the best-studied model systems for Notch, blood cell development. Alterations in the RBPJ-corepressor functions can contribute to the development of leukemia, especially in the case of acute myeloid leukemia (AML). The versatile role of transcription factor RBPJ in regulating pivotal target genes like c-MYC and HES1 may contribute to the better understanding of the development of leukemia.


Assuntos
Regulação da Expressão Gênica , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Receptores Notch/metabolismo , Cromatina/genética , Cromatina/metabolismo , Humanos , Transdução de Sinais
9.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445503

RESUMO

Histone variants differ in amino acid sequence, expression timing and genomic localization sites from canonical histones and convey unique functions to eukaryotic cells. Their tightly controlled spatial and temporal deposition into specific chromatin regions is accomplished by dedicated chaperone and/or remodeling complexes. While quantitatively identifying the chaperone complexes of many human H2A variants by using mass spectrometry, we also found additional members of the known H2A.Z chaperone complexes p400/TIP60/NuA4 and SRCAP. We discovered JAZF1, a nuclear/nucleolar protein, as a member of a p400 sub-complex containing MBTD1 but excluding ANP32E. Depletion of JAZF1 results in transcriptome changes that affect, among other pathways, ribosome biogenesis. To identify the underlying molecular mechanism contributing to JAZF1's function in gene regulation, we performed genome-wide ChIP-seq analyses. Interestingly, depletion of JAZF1 leads to reduced H2A.Z acetylation levels at > 1000 regulatory sites without affecting H2A.Z nucleosome positioning. Since JAZF1 associates with the histone acetyltransferase TIP60, whose depletion causes a correlated H2A.Z deacetylation of several JAZF1-targeted enhancer regions, we speculate that JAZF1 acts as chromatin modulator by recruiting TIP60's enzymatic activity. Altogether, this study uncovers JAZF1 as a member of a TIP60-containing p400 chaperone complex orchestrating H2A.Z acetylation at regulatory regions controlling the expression of genes, many of which are involved in ribosome biogenesis.


Assuntos
Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Sequências Reguladoras de Ácido Nucleico , Acetilação , Linhagem Celular , Montagem e Desmontagem da Cromatina , Biologia Computacional/métodos , DNA Helicases/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Genômica/métodos , Humanos , Íntrons , Lisina Acetiltransferase 5/metabolismo , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos , Ligação Proteica , Ribossomos , Fatores de Transcrição/metabolismo
10.
Nucleic Acids Res ; 46(16): 8197-8215, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-29986055

RESUMO

A fundamental as yet incompletely understood feature of Notch signal transduction is a transcriptional shift from repression to activation that depends on chromatin regulation mediated by transcription factor RBP-J and associated cofactors. Incorporation of histone variants alter the functional properties of chromatin and are implicated in the regulation of gene expression. Here, we show that depletion of histone variant H2A.Z leads to upregulation of canonical Notch target genes and that the H2A.Z-chaperone TRRAP/p400/Tip60 complex physically associates with RBP-J at Notch-dependent enhancers. When targeted to RBP-J-bound enhancers, the acetyltransferase Tip60 acetylates H2A.Z and upregulates Notch target gene expression. Importantly, the Drosophila homologs of Tip60, p400 and H2A.Z modulate Notch signaling response and growth in vivo. Together, our data reveal that loading and acetylation of H2A.Z are required to assure tight control of canonical Notch activation.


Assuntos
Regulação da Expressão Gênica , Histonas/genética , Receptores Notch/genética , Transdução de Sinais/genética , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Lisina Acetiltransferase 5/genética , Lisina Acetiltransferase 5/metabolismo , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo
11.
PLoS Biol ; 14(7): e1002524, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27458807

RESUMO

Notch signaling is iteratively used throughout development to maintain stem cell potential or in other instances allow differentiation. The central transcription factor in Notch signaling is CBF-1/RBP-J, Su(H), Lag-1 (CSL)-Su(H) in Drosophila-which functions as a molecular switch between transcriptional activation and repression. Su(H) represses transcription by forming a complex with the corepressor Hairless (H). The Su(H)-repressor complex not only competes with the Notch intracellular domain (NICD) but also configures the local chromatin landscape. In this issue, Yuan and colleagues determined the structure of the Su(H)/H complex, showing that a major conformational change within Su(H) explains why the binding of NICD and H is mutually exclusive.


Assuntos
Proteínas de Drosophila/química , Drosophila , Animais , Proteínas de Ligação a DNA , Proteínas de Membrana , Receptores Notch/química , Proteínas Repressoras/química , Transdução de Sinais , Fatores de Transcrição/química
12.
Biochim Biophys Acta Mol Basis Dis ; 1864(5 Pt A): 1816-1827, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29501774

RESUMO

OBJECTIVES: Enolase-1-dependent cell surface proteolysis plays an important role in cell invasion. Although enolase-1 (Eno-1), a glycolytic enzyme, has been found on the surface of various cells, the mechanism responsible for its exteriorization remains elusive. Here, we investigated the involvement of post-translational modifications (PTMs) of Eno-1 in its lipopolysaccharide (LPS)-triggered trafficking to the cell surface. RESULTS: We found that stimulation of human lung adenocarcinoma cells with LPS triggered the monomethylation of arginine 50 (R50me) within Eno-1. The Eno-1R50me was confirmed by its interaction with the tudor domain (TD) from TD-containing 3 (TDRD3) protein recognizing methylarginines. Substitution of R50 with lysine (R50K) reduced Eno-1 association with epithelial caveolar domains, thereby diminishing its exteriorization. Similar effects were observed when pharmacological inhibitors of arginine methyltransferases were applied. Protein arginine methyltransferase 5 (PRMT5) was identified to be responsible for Eno-1 methylation. Overexpression of PRMT5 and caveolin-1 enhanced levels of membrane-bound extracellular Eno-1 and, conversely, pharmacological inhibition of PRMT5 attenuated Eno-1 cell-surface localization. Importantly, Eno-1R50me was essential for cancer cell motility since the replacement of Eno-1 R50 by lysine or the suppression of PRMT 5 activity diminished Eno-1-triggered cell invasion. CONCLUSIONS: LPS-triggered Eno-1R50me enhances Eno-1 cell surface levels and thus potentiates the invasive properties of cancer cells. Strategies to target Eno-1R50me may offer novel therapeutic approaches to attenuate tumor metastasis in cancer patients.


Assuntos
Adenocarcinoma/enzimologia , Biomarcadores Tumorais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Pulmonares/enzimologia , Proteínas de Neoplasias/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Células A549 , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Biomarcadores Tumorais/genética , Caveolina 1/genética , Caveolina 1/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Lipopolissacarídeos/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/genética , Fosfopiruvato Hidratase/genética , Transporte Proteico/efeitos dos fármacos , Proteína-Arginina N-Metiltransferases/genética , Proteínas Supressoras de Tumor/genética
13.
Nucleic Acids Res ; 44(10): 4703-20, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-26912830

RESUMO

The transcriptional shift from repression to activation of target genes is crucial for the fidelity of Notch responses through incompletely understood mechanisms that likely involve chromatin-based control. To activate silenced genes, repressive chromatin marks are removed and active marks must be acquired. Histone H3 lysine-4 (H3K4) demethylases are key chromatin modifiers that establish the repressive chromatin state at Notch target genes. However, the counteracting histone methyltransferase required for the active chromatin state remained elusive. Here, we show that the RBP-J interacting factor SHARP is not only able to interact with the NCoR corepressor complex, but also with the H3K4 methyltransferase KMT2D coactivator complex. KMT2D and NCoR compete for the C-terminal SPOC-domain of SHARP. We reveal that the SPOC-domain exclusively binds to phosphorylated NCoR. The balance between NCoR and KMT2D binding is shifted upon mutating the phosphorylation sites of NCoR or upon inhibition of the NCoR kinase CK2ß. Furthermore, we show that the homologs of SHARP and KMT2D in Drosophila also physically interact and control Notch-mediated functions in vivo Together, our findings reveal how signaling can fine-tune a committed chromatin state by phosphorylation of a pivotal chromatin-modifier.


Assuntos
Cromatina/metabolismo , Proteínas Correpressoras/metabolismo , Regulação da Expressão Gênica , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo , Transcrição Gênica , Animais , Caseína Quinase II/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Código das Histonas , Histona-Lisina N-Metiltransferase , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Proteínas Nucleares/química , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA , Xenopus laevis
14.
Adv Exp Med Biol ; 1066: 3-30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30030819

RESUMO

The Notch signaling pathway plays a pivotal role in development, physiology and diseases such as cancer. In this chapter, we first give an overview of the different molecular mechanisms that regulate Notch signaling. Each subject is covered in more depth in the subsequent chapters of this book. Next, we will use the inflammatory system as an example to discuss the physiological function of Notch signaling. This is followed by a discussion of recent advances in the different pathophysiological roles of Notch signaling in leukemia as well as a wide range of solid cancers. Finally, we discuss how information about pathogenic mutations in Notch pathway components, combined with structural biological data, are beginning to provide important biological and mechanistic insights about the pathway.


Assuntos
Leucemia , Proteínas de Neoplasias , Receptores Notch , Transdução de Sinais/genética , Animais , Humanos , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo
15.
Genes Dev ; 24(6): 590-601, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20231316

RESUMO

Timely acquisition of cell fates and the elaborate control of growth in numerous organs depend on Notch signaling. Upon ligand binding, the core transcription factor RBP-J activates transcription of Notch target genes. In the absence of signaling, RBP-J switches off target gene expression, assuring the tight spatiotemporal control of the response by a mechanism incompletely understood. Here we show that the histone demethylase KDM5A is an integral, conserved component of Notch/RBP-J gene silencing. Methylation of histone H3 Lys 4 is dynamically erased and re-established at RBP-J sites upon inhibition and reactivation of Notch signaling. KDM5A interacts physically with RBP-J; this interaction is conserved in Drosophila and is crucial for Notch-induced growth and tumorigenesis responses.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Receptores Notch/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji , Camundongos , Linfócitos T , Ubiquitina-Proteína Ligases
16.
Biochim Biophys Acta ; 1863(2): 303-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26592459

RESUMO

Notch signaling is a highly conserved signal transduction pathway that regulates stem cell maintenance and differentiation in several organ systems. Upon activation, the Notch receptor is proteolytically processed, its intracellular domain (NICD) translocates into the nucleus and activates expression of target genes. Output, strength and duration of the signal are tightly regulated by post-translational modifications. Here we review the intracellular post-translational regulation of Notch that fine-tunes the outcome of the Notch response. We also describe how crosstalk with other conserved signaling pathways like the Wnt, Hedgehog, hypoxia and TGFß/BMP pathways can affect Notch signaling output. This regulation can happen by regulation of ligand, receptor or transcription factor expression, regulation of protein stability of intracellular key components, usage of the same cofactors or coregulation of the same key target genes. Since carcinogenesis is often dependent on at least two of these pathways, a better understanding of their molecular crosstalk is pivotal.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Animais , Humanos , Hipóxia , Modelos Biológicos
17.
EMBO J ; 30(1): 43-56, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21102556

RESUMO

The evolutionarily conserved Notch signal transduction pathway regulates fundamental cellular processes during embryonic development and in the adult. Ligand binding induces presenilin-dependent cleavage of the receptor and a subsequent nuclear translocation of the Notch intracellular domain (NICD). In the nucleus, NICD binds to the recombination signal sequence-binding protein J (RBP-J)/CBF-1 transcription factor to induce expression of Notch target genes. Here, we report the identification and functional characterization of RBP-J interacting and tubulin associated (RITA) (C12ORF52) as a novel RBP-J/CBF-1-interacting protein. RITA is a highly conserved 36 kDa protein that, most interestingly, binds to tubulin in the cytoplasm and shuttles rapidly between cytoplasm and nucleus. This shuttling RITA exports RBP-J/CBF-1 from the nucleus. Functionally, we show that RITA can reverse a Notch-induced loss of primary neurogenesis in Xenopus laevis. Furthermore, RITA is able to downregulate Notch-mediated transcription. Thus, we propose that RITA acts as a negative modulator of the Notch signalling pathway, controlling the level of nuclear RBP-J/CBF-1, where its amounts are limiting.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Receptores Notch/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Centrossomo/ultraestrutura , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Expressão Gênica , Células HeLa , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/genética , Neurogênese , Ligação Proteica , Transporte Proteico , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Notch/genética , Transcrição Gênica , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/análise , Proteínas de Xenopus/genética , Xenopus laevis/genética
18.
Biochim Biophys Acta ; 1833(5): 1180-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23396200

RESUMO

Notch signaling plays a pivotal role in embryonic and postnatal development. Upon binding of a Notch ligand, proteolytic cleavage events liberate the Notch-intracellular domain (NICD) that migrates into the nucleus. In order to activate target genes, NICD associates with the transcription factor RBP-J (also known as CSL), Mastermind and the acetyltransferase p300. Here, we identify the DEAD-box RNA helicase Ddx5 as a novel component of the RBP-J/NICD complex utilizing a biotinylation-tagging approach followed by mass-spectrometry. Biochemical assays confirm a direct interaction of Ddx5 with RBP-J. We show that Ddx5 localizes at RBP-J binding sites within the Notch target genes preTCRα, Hes1 and CD25 in a Notch-dependent manner. Moreover, knockdown of Ddx5 also downregulates a subset of Notch target genes in a murine pre T-cell model. Interestingly, also knockdown/overexpression of the RNA coactivator SRA, a cofactor of Ddx5, downregulates Hes1 and preTCRα. Using Chromatin-IP, we show that this effect is accompanied with a loss of p300 occupancy at Notch target genes and decreased histone acetylation. Together, our data demonstrate that Ddx5 and SRA function as coactivators of Notch signaling.


Assuntos
RNA Helicases DEAD-box , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , RNA Longo não Codificante , Receptores Notch , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Camundongos , Complexos Multiproteicos/metabolismo , Ligação Proteica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais
19.
Proc Natl Acad Sci U S A ; 108(41): 17105-10, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21949387

RESUMO

CD1d-restricted invariant NKT (iNKT) cells are a unique lineage of T lymphocytes that regulate both innate and adaptive immunity. The Mediator complex forms the bridge between transcriptional activators and the general transcription machinery. Med1/TRAP220 (also called DRIP205) is a key component of Mediator that interacts with ligand-bound hormone receptors, such as the vitamin D receptor. Here, we show that T-cell-specific Med1 deficiency results in a specific block in iNKT cell development but the development of conventional αß T cells remains grossly normal. The defect is cell-intrinsic and depends neither on apoptosis, cell-cycle control, nor on CD1d expression of CD4(+)CD8(+) double-positive thymocytes. Surprisingly, ectopic expression of a Vα14-Jα18 T-cell receptor transgene completely rescues the defect caused by Med1 deficiency. At the molecular level, thymic iNKT cells in Med1(-/-) animals display reduced levels of IL-2Rß and T-bet expression and could not complete terminal maturation. Thus, Med1 is essential for a complete intrathymic development of iNKT cells.


Assuntos
Subunidade 1 do Complexo Mediador/imunologia , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Animais , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Expressão Gênica , Subunidade beta de Receptor de Interleucina-2/genética , Subunidade beta de Receptor de Interleucina-2/metabolismo , Subunidade 1 do Complexo Mediador/deficiência , Subunidade 1 do Complexo Mediador/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células T Matadoras Naturais/citologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
20.
Semin Cell Dev Biol ; 22(7): 759-68, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21839847

RESUMO

The Mediator complex forms the bridge between gene-specific transcription factors and the RNA polymerase II (RNAP II) machinery. Mediator is a large polypetide complex consisting of about thirty polypeptides that are mostly conserved from yeast to human. Mediator coordinates RNAP II recruitment, phosphorylation of the C-terminal domain of RNAP II, enhancer-loop formation and post-initiation events. The focus of the review is to summarize the current knowledge of transcription factor/Mediator interactions in higher eukaryotes and illuminate the physiological and gene-selective roles of Mediator.


Assuntos
Complexo Mediador/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Humanos , Metabolismo dos Lipídeos , Sistema de Sinalização das MAP Quinases , Complexo Mediador/química , Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição TFII/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA