Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(35): 14330-5, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940329

RESUMO

Protection against influenza is mediated by neutralizing antibodies, and their induction at high and sustained titers is key for successful vaccination. Optimal B cells activation requires delivery of help from CD4(+) T lymphocytes. In lymph nodes and tonsils, T-follicular helper cells have been identified as the T cells subset specialized in helping B lymphocytes, with interleukin-21 (IL-21) and inducible costimulatory molecule (ICOS1) playing a central role for this function. We followed the expansion of antigen-specific IL-21(+) CD4(+) T cells upon influenza vaccination in adults. We show that, after an overnight in vitro stimulation, influenza-specific IL-21(+) CD4(+) T cells can be measured in human blood, accumulate in the CXCR5(-)ICOS1(+) population, and increase in frequency after vaccination. The expansion of influenza-specific ICOS1(+)IL-21(+) CD4(+) T cells associates with and predicts the rise of functionally active antibodies to avian H5N1. We also show that blood-derived CXCR5(-)ICOS1(+) CD4(+) T cells exert helper function in vitro and support the differentiation of influenza specific B cells in an ICOS1- and IL-21-dependent manner. We propose that the expansion of antigen-specific ICOS1(+)IL-21(+) CD4(+) T cells in blood is an early marker of vaccine immunogenicity and an important immune parameter for the evaluation of novel vaccination strategies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Humanos , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/sangue , Influenza Humana/prevenção & controle , Interleucinas , Vacinação
2.
Proc Natl Acad Sci U S A ; 110(9): 3304-9, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23396847

RESUMO

Mapping of epitopes recognized by functional monoclonal antibodies (mAbs) is essential for understanding the nature of immune responses and designing improved vaccines, therapeutics, and diagnostics. In recent years, identification of B-cell epitopes targeted by neutralizing antibodies has facilitated the design of peptide-based vaccines against highly variable pathogens like HIV, respiratory syncytial virus, and Helicobacter pylori; however, none of these products has yet progressed into clinical stages. Linear epitopes identified by conventional mapping techniques only partially reflect the immunogenic properties of the epitope in its natural conformation, thus limiting the success of this approach. To investigate antigen-antibody interactions and assess the potential of the most common epitope mapping techniques, we generated a series of mAbs against factor H binding protein (fHbp), a key virulence factor and vaccine antigen of Neisseria meningitidis. The interaction of fHbp with the bactericidal mAb 12C1 was studied by various epitope mapping methods. Although a 12-residue epitope in the C terminus of fHbp was identified by both Peptide Scanning and Phage Display Library screening, other approaches, such as hydrogen/deuterium exchange mass spectrometry (MS) and X-ray crystallography, showed that mAb 12C1 occupies an area of ∼1,000 Å(2) on fHbp, including >20 fHbp residues distributed on both N- and C-terminal domains. Collectively, these data show that linear epitope mapping techniques provide useful but incomplete descriptions of B-cell epitopes, indicating that increased efforts to fully characterize antigen-antibody interfaces are required to understand and design effective immunogens.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Epitopos/imunologia , Vacinas Meningocócicas/imunologia , Neisseria meningitidis/imunologia , Neisseria meningitidis/patogenicidade , Fatores de Virulência/imunologia , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos/imunologia , Antígenos de Bactérias/química , Proteínas de Bactérias/química , Técnicas de Visualização da Superfície Celular , Cristalografia por Raios X , Medição da Troca de Deutério , Mapeamento de Epitopos , Epitopos/química , Espectrometria de Massas , Infecções Meningocócicas/imunologia , Infecções Meningocócicas/microbiologia , Infecções Meningocócicas/prevenção & controle , Modelos Moleculares , Peptídeos/química , Peptídeos/imunologia , Ligação Proteica/imunologia , Ressonância de Plasmônio de Superfície , Fatores de Virulência/química
3.
Vaccine ; 41(3): 724-734, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36564274

RESUMO

The candidate Adjuvant System AS37 contains a synthetic toll-like receptor agonist (TLR7a) adsorbed to alum. In a phase I study (NCT02639351), healthy adults were randomised to receive one dose of licensed alum-adjuvanted meningococcal serogroup C (MenC-CRM197) conjugate vaccine (control) or MenC-CRM197 conjugate vaccine adjuvanted with AS37 (TLR7a dose 12.5, 25, 50 or 100 µg). A subset of 66 participants consented to characterisation of peripheral whole blood transcriptomic responses, systemic cytokine/chemokine responses and multiple myeloid and lymphoid cell responses as exploratory study endpoints. Blood samples were collected pre-vaccination, 6 and 24 h post-vaccination, and 3, 7, 28 and 180 days post-vaccination. The gene expression profile in whole blood showed an early, AS37-specific transcriptome response that peaked at 24 h, increased with TLR7a dose up to 50 µg and generally resolved within one week. Five clusters of differentially expressed genes were identified, including those involved in the interferon-mediated antiviral response. Evaluation of 30 cytokines/chemokines by multiplex assay showed an increased level of interferon-induced chemokine CXCL10 (IP-10) at 24 h and 3 days post-vaccination in the AS37-adjuvanted vaccine groups. Increases in activated plasmacytoid dendritic cells (pDC) and intermediate monocytes were detected 3 days post-vaccination in the AS37-adjuvanted vaccine groups. T follicular helper (Tfh) cells increased 7 days post-vaccination and were maintained at 28 days post-vaccination, particularly in the AS37-adjuvanted vaccine groups. Moreover, most of the subjects that received vaccine containing 25, 50 and 100 µg TLR7a showed an increased MenC-specific memory B cell responses versus baseline. These data show that the adsorption of TLR7a to alum promotes an immune signature consistent with TLR7 engagement, with up-regulation of interferon-inducible genes, cytokines and frequency of activated pDC, intermediate monocytes, MenC-specific memory B cells and Tfh cells. TLR7a 25-50 µg can be considered the optimal dose for AS37, particularly for the adjuvanted MenC-CRM197 conjugate vaccine.


Assuntos
Hidróxido de Alumínio , Vacinas Meningocócicas , Adulto , Humanos , Interferons , Receptor 7 Toll-Like , Antivirais , Vacinas Conjugadas , Adjuvantes Imunológicos , Citocinas , Análise de Sistemas
4.
Proc Natl Acad Sci U S A ; 106(10): 3877-82, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19237568

RESUMO

Immune responses to vaccination are tested in clinical trials. This process usually requires years especially when immune memory and persistence are analyzed. Markers able to quickly predict the immune response would be very useful, particularly when dealing with emerging diseases that require a rapid response, such as avian influenza. To address this question we vaccinated healthy adults at days 1, 22, and 202 with plain or MF59-adjuvanted H5N1 subunit vaccines and tested both cell-mediated and antibody responses up to day 382. Only the MF59-H5N1 vaccine induced high titers of neutralizing antibodies, a large pool of memory H5N1-specific B lymphocytes, and H5-CD4(+) T cells broadly reactive with drifted H5. The CD4(+) response was dominated by IL-2(+) IFN-gamma(-) IL-13(-) T cells. Remarkably, a 3-fold increase in the frequency of virus-specific total CD4(+) T cells, measurable after 1 dose, accurately predicted the rise of neutralizing antibodies after booster immunization and their maintenance 6 months later. We suggest that CD4(+) T cell priming might be used as an early predictor of the immunogenicity of prepandemic vaccines.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Polissorbatos/administração & dosagem , Esqualeno/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Adulto , Formação de Anticorpos/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta Imunológica , Humanos , Memória Imunológica/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Vacinas contra Influenza/farmacologia , Testes de Neutralização , Fenótipo , Polissorbatos/farmacologia , Esqualeno/farmacologia , Células Th1/citologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Fatores de Tempo , Vacinação
5.
Blood ; 113(18): 4232-9, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19176317

RESUMO

Dendritic cell (DC) populations play unique and essential roles in the detection of pathogens, but information on how different DC types work together is limited. In this study, 2 major DC populations of human blood, myeloid (mDCs) and plasmacytoid (pDCs), were cultured alone or together in the presence of pathogens or their products. We show that pDCs do not respond to whole bacteria when cultured alone, but mature in the presence of mDCs. Using purified stimuli, we dissect this cross-talk and demonstrate that mDCs and pDCs activate each other in response to specific induction of only one of the cell types. When stimuli for one or both populations are limited, they synergize to reach optimal activation. The cross-talk is limited to enhanced antigen presentation by the nonresponsive population with no detectable changes in the quantity and range of cytokines produced. We propose that each population can be a follower or leader in immune responses against pathogen infections, depending on their ability to respond to infectious agents. In addition, our results indicate that pDCs play a secondary role to induce immunity against human bacterial infections, which has implications for more efficient targeting of DC populations with improved vaccines and therapeutics.


Assuntos
Bactérias/patogenicidade , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Células Mieloides/imunologia , Células Mieloides/microbiologia , Técnicas de Cultura de Células , Citocinas/metabolismo , Citometria de Fluxo , Humanos , Rim/metabolismo , Luciferases/metabolismo , Ativação Linfocitária/imunologia , Fagocitose , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptores Toll-Like/genética , Transfecção
6.
Front Immunol ; 12: 749432, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819932

RESUMO

Staphylococcus aureus is a common human commensal and the leading cause of diverse infections. To identify distinctive parameters associated with infection and colonization, we compared the immune and inflammatory responses of patients with a diagnosis of invasive S. aureus disease to healthy donors. We analyzed the inflammatory responses founding a pattern of distinctive cytokines significantly higher in the patients with invasive disease. The measure of antibody levels revealed a wide antibody responsiveness from all subjects to most of the antigens, with significantly higher response for some antigens in the invasive patients compared to control. Moreover, functional antibodies against toxins distinctively associated with the invasive disease. Finally, we examined the genomic variability of isolates, showing no major differences in genetic distribution compared to a panel of representative strains. Overall, our study shows specific signatures of cytokines and functional antibodies in patients with different primary invasive diseases caused by S. aureus. These data provide insight into human responses towards invasive staphylococcal infections and are important for guiding the identification of novel preventive and therapeutic interventions against S. aureus.


Assuntos
Infecções Estafilocócicas/imunologia , Adulto , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Criança , Citocinas/sangue , Humanos , Imunoglobulina G/sangue , Análise Serial de Proteínas , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/genética , Staphylococcus aureus/imunologia , Fatores de Virulência/imunologia
7.
Sci Data ; 6(1): 149, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409798

RESUMO

Biomedical informatics has traditionally adopted a linear view of the informatics process (collect, store and analyse) in translational medicine (TM) studies; focusing primarily on the challenges in data integration and analysis. However, a data management challenge presents itself with the new lifecycle view of data emphasized by the recent calls for data re-use, long term data preservation, and data sharing. There is currently a lack of dedicated infrastructure focused on the 'manageability' of the data lifecycle in TM research between data collection and analysis. Current community efforts towards establishing a culture for open science prompt the creation of a data custodianship environment for management of TM data assets to support data reuse and reproducibility of research results. Here we present the development of a lifecycle-based methodology to create a metadata management framework based on community driven standards for standardisation, consolidation and integration of TM research data. Based on this framework, we also present the development of a new platform (PlatformTM) focused on managing the lifecycle for translational research data assets.


Assuntos
Disseminação de Informação , Informática Médica , Pesquisa Translacional Biomédica , Humanos , Metadados , Interface Usuário-Computador
8.
Lancet Gastroenterol Hepatol ; 3(10): 698-707, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30042064

RESUMO

BACKGROUND: Intramuscular immunisation with a vaccine composed of three recombinant Helicobacter pylori antigens-vacuolating cytotoxin A (VacA), cytotoxin-associated antigen (CagA), and neutrophil-activating protein (NAP)-prevented infection in animal models and was well tolerated and highly immunogenic in healthy adults. We aimed to assess the efficacy of the vaccine in prevention of a H pylori infection after challenge with a CagA-positive strain (BCM 300) in healthy volunteers. METHODS: In this randomised phase 1/2, observer-blind, placebo-controlled, single-centre study, healthy non-pregnant adults aged 18-40 years who were confirmed negative for H pylori infection were randomly assigned (3:4) to three intramuscular doses of either placebo or vaccine at 0, 1, and 2 months. Randomisation was via a computer-generated list with study numbers ensuring the correct ratio within a block size of seven. Participants were consecutively assigned in a double-blind manner to existing study numbers of the study protocol. Investigators and participants were blinded to allocation throughout the study. One month after the third immunisation, participants underwent challenge with a CagA-positive H pylori strain, which, for safety reasons, was initially administered in a subset of participants. The primary efficacy outcome was the efficacy of the vaccine as measured by the proportion of participants infected with H pylori 12 weeks after the challenge. At the end of the study, participants infected with H pylori were treated for 14 days with combination therapy consisting of a proton pump inhibitor and two antibiotics twice daily. Safety and immunogenicity were monitored at pre-established visits. This trial is registered with ClinicalTrials.gov, number NCT00736476, and is completed. FINDINGS: 63 patients were randomly assigned, 27 to placebo and 36 to the vaccine. 34 participants (19 in the vaccinated group and 15 in the placebo group) underwent infectious challenge, all but one of whom experienced transient mild-to-moderate epigastric symptoms. 12 weeks after infectious challenge, six (32%) of 19 people in the vaccinated group and six (40%) of 15 people in the placebo group remained positive for H pylori. Eradication was successful in everyone who remained infected at 12 weeks. The geometric mean concentrations of antibodies specific to CagA (202 [95% CI 69-588] vs 4·73 [95% CI 1·41-16]; p=0·001), VacA (1469 [838-2577] vs 73 [39-138]; p=0·001), and NAP (208 [139-313] vs 8·01 [5·05-13]; p=0·001) were significantly higher in the vaccine group than in the placebo group 12 weeks after infectious challenge. INTERPRETATION: Compared with placebo, the vaccine did not confer additional protection against H pylori infection after challenge with a CagA-positive strain, despite increased systemic humoral responses to key H pylori antigens. The finding of spontaneous clearance of H pylori infection in more than half the participants in the placebo group is remarkable and suggests important immune protection in the healthy adult population. FUNDING: Novartis Vaccine and Diagnostics.


Assuntos
Vacinas Bacterianas/imunologia , Vacinas Bacterianas/uso terapêutico , Gastrite/prevenção & controle , Infecções por Helicobacter/prevenção & controle , Helicobacter pylori/imunologia , Imunogenicidade da Vacina , Adulto , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/efeitos adversos , Quimiocina CXCL1/imunologia , Método Duplo-Cego , Feminino , Gastrite/microbiologia , Humanos , Imunidade Celular , Imunoglobulina G/sangue , Injeções Intramusculares , Masculino , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/uso terapêutico , Adulto Jovem
9.
Hum Vaccin Immunother ; 14(1): 45-58, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29172945

RESUMO

Despite high vaccination coverage worldwide, pertussis has re-emerged in many countries. This randomized, controlled, observer-blind phase I study and extension study in Belgium (March 2012-June 2015) assessed safety and immunogenicity of investigational acellular pertussis vaccines containing genetically detoxified pertussis toxin (PT) (NCT01529645; NCT02382913). 420 healthy adults (average age: 26.8 ± 5.5 years, 60% female) were randomized to 1 of 10 vaccine groups: 3 investigational aP vaccines (containing pertussis antigens PT, filamentous hemagglutinin [FHA] and pertactin [PRN] at different dosages), 6 investigational TdaP (additionally containing tetanus toxoid [TT] and diphtheria toxoid [DT]), and 1 TdaP comparator containing chemically inactivated PT. Antibody responses were evaluated on days 1, 8, 30, 180, 365, and approximately 3 years post-booster vaccination. Cell-mediated immune responses and PT neutralization were evaluated in a subset of participants in pre-selected groups. Local and systemic adverse events (AEs), and unsolicited AEs were collected through day 7 and 30, respectively; serious AEs and AEs leading to study withdrawal were collected through day 365 post-vaccination. Antibody responses against pertussis antigens peaked at day 30 post-vaccination and then declined but remained above baseline level at approximately 3 years post-vaccination. Responses to FHA and PRN were correlated to antigen dose. Antibody responses specific to PT, toxin neutralization activity and persistence induced by investigational formulations were similar or significantly higher than the licensed vaccine, despite lower PT doses. Of 15 serious AEs, none were considered vaccination-related; 1 led to study withdrawal (premature labor, day 364; aP4 group). This study confirmed the potential benefits of genetically detoxified PT antigen. All investigational study formulations were well tolerated.


Assuntos
Vacinas contra Difteria, Tétano e Coqueluche Acelular/administração & dosagem , Imunização Secundária/métodos , Toxina Pertussis/imunologia , Vacina contra Coqueluche/administração & dosagem , Vacinação/métodos , Coqueluche/prevenção & controle , Adulto , Anticorpos Antibacterianos/análise , Bélgica , Vacinas contra Difteria, Tétano e Coqueluche Acelular/efeitos adversos , Vacinas contra Difteria, Tétano e Coqueluche Acelular/genética , Vacinas contra Difteria, Tétano e Coqueluche Acelular/imunologia , Feminino , Humanos , Imunidade Celular , Imunogenicidade da Vacina , Masculino , Toxina Pertussis/genética , Vacina contra Coqueluche/efeitos adversos , Vacina contra Coqueluche/genética , Vacina contra Coqueluche/imunologia , Resultado do Tratamento , Coqueluche/sangue , Coqueluche/imunologia , Adulto Jovem
10.
PLoS One ; 11(6): e0157066, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27336786

RESUMO

CD4+ T follicular helper cells (T(FH)) have been identified as the T-cell subset specialized in providing help to B cells for optimal activation and production of high affinity antibody. We recently demonstrated that the expansion of peripheral blood influenza-specific CD4(+)IL-21(+)ICOS1(+) T helper (T(H)) cells, three weeks after vaccination, associated with and predicted the rise of protective neutralizing antibodies to avian H5N1. In this study, healthy adults were vaccinated with plain seasonal trivalent inactivated influenza vaccine (TIIV), MF59(®)-adjuvanted TIIV (ATIIV), or saline placebo. Frequencies of circulating CD4(+) T(FH)1 ICOS(+) T(FH) cells and H1N1-specific CD4(+-)IL-21(+)ICOS(+) CXCR5(+) T(FH) and CXCR5(-) T(H) cell subsets were determined at various time points after vaccination and were then correlated with hemagglutination inhibition (HI) titers. All three CD4(+) T cell subsets expanded in response to TIIV and ATIIV, and peaked 7 days after vaccination. To demonstrate that these T(FH) cell subsets correlated with functional antibody titers, we defined an alternative endpoint metric, decorrelated HI (DHI), which removed any correlation between day 28/day 168 and day 0 HI titers, to control for the effect of preexisting immunity to influenza vaccine strains. The numbers of total circulating CD4(+)T(FH)1 ICOS(+) cells and of H1N1-specific CD4(+)IL-21(+)ICOS(+) CXCR5(+), measured at day 7, were significantly associated with day 28, and day 28 and 168 DHI titers, respectively. Altogether, our results show that CD4(+) T(FH) subsets may represent valuable biomarkers of vaccine-induced long-term functional immunity.


Assuntos
Formação de Anticorpos/imunologia , Imunidade , Contagem de Linfócitos , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Vacinação , Adolescente , Adulto , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Testes de Inibição da Hemaglutinação , Humanos , Imunofenotipagem , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Ativação Linfocitária/imunologia , Prognóstico , Vigilância em Saúde Pública , Receptores CXCR5/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Fatores de Tempo , Adulto Jovem
11.
Sci Rep ; 6: 31458, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27530334

RESUMO

We have recently described a method, named PROFILER, for the identification of antigenic regions preferentially targeted by polyclonal antibody responses after vaccination. To test the ability of the technique to provide insights into the functional properties of monoclonal antibody (mAb) epitopes, we used here a well-characterized epitope of meningococcal factor H binding protein (fHbp), which is recognized by mAb 12C1. An fHbp library, engineered on a lambda phage vector enabling surface expression of polypeptides of widely different length, was subjected to massive parallel sequencing of the phage inserts after affinity selection with the 12C1 mAb. We detected dozens of unique antibody-selected sequences, the most enriched of which (designated as FrC) could largely recapitulate the ability of fHbp to bind mAb 12C1. Computational analysis of the cumulative enrichment of single amino acids in the antibody-selected fragments identified two overrepresented stretches of residues (H248-K254 and S140-G154), whose presence was subsequently found to be required for binding of FrC to mAb 12C1. Collectively, these results suggest that the PROFILER technology can rapidly and reliably identify, in the context of complex conformational epitopes, discrete "hot spots" with a crucial role in antigen-antibody interactions, thereby providing useful clues for the functional characterization of the epitope.


Assuntos
Anticorpos Monoclonais Murinos/química , Bacteriófago lambda/genética , Epitopos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Biblioteca de Peptídeos , Animais , Camundongos
12.
MAbs ; 8(4): 741-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26963435

RESUMO

There is a strong need for rapid and reliable epitope mapping methods that can keep pace with the isolation of increasingly larger numbers of mAbs. We describe here the identification of a conformational epitope using Phage-based Representation OF ImmunoLigand Epitope Repertoire (PROFILER), a recently developed high-throughput method based on deep sequencing of antigen-specific lambda phage-displayed libraries. A novel bactericidal monoclonal antibody (mAb 9F11) raised against Neisseria meningitidis adhesin A (NadA), an important component of the Bexsero(®) anti-meningococcal vaccine, was used to evaluate the technique in comparison with other epitope mapping methods. The PROFILER technology readily identified NadA fragments that were capable of fully recapitulating the reactivity of the entire antigen against mAb 9F11. Further analysis of these fragments using mutagenesis and hydrogen-deuterium exchange mass-spectrometry allowed us to identify the binding site of mAb 9F11 (A250-D274) and an adjoining sequence (V275-H312) that was also required for the full functional reconstitution of the epitope. These data suggest that, by virtue of its ability to detect a great variety of immunoreactive antigen fragments in phage-displayed libraries, the PROFILER technology can rapidly and reliably identify epitope-containing regions and provide, in addition, useful clues for the functional characterization of conformational mAb epitopes.


Assuntos
Adesinas Bacterianas/imunologia , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Técnicas de Visualização da Superfície Celular/métodos , Mapeamento de Epitopos/métodos , Neisseria meningitidis/imunologia , Animais , Vacinas Bacterianas/imunologia , Vacinas Meningocócicas , Fragmentos de Peptídeos/imunologia
13.
PLoS One ; 11(8): e0160702, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27508302

RESUMO

We explore here the potential of a newly described technology, which is named PROFILER and is based on next generation sequencing of gene-specific lambda phage-displayed libraries, to rapidly and accurately map monoclonal antibody (mAb) epitopes. For this purpose, we used a novel mAb (designated 31E10/E7) directed against Neisserial Heparin-Binding Antigen (NHBA), a component of the anti-group B meningococcus Bexsero® vaccine. An NHBA phage-displayed library was affinity-selected with mAb 31E10/E7, followed by massive sequencing of the inserts present in antibody-selected phage pools. Insert analysis identified an amino acid stretch (D91-A128) in the N-terminal domain, which was shared by all of the mAb-enriched fragments. Moreover, a recombinant fragment encompassing this sequence could recapitulate the immunoreactivity of the entire NHBA molecule against mAb 31E10/E7. These results were confirmed using a panel of overlapping recombinant fragments derived from the NHBA vaccine variant and a set of chemically synthetized peptides covering the 10 most frequent antigenic variants. Furthermore, hydrogen-deuterium exchange mass-spectrometry analysis of the NHBA-mAb 31E10/E7 complex was also compatible with mapping of the epitope to the D91-A128 region. Collectively, these results indicate that the PROFILER technology can reliably identify epitope-containing antigenic fragments and requires considerably less work, time and reagents than other epitope mapping methods.


Assuntos
Anticorpos Monoclonais/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Transporte/imunologia , Mapeamento de Epitopos/métodos , Biblioteca de Peptídeos , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Reações Cruzadas , Sequenciamento de Nucleotídeos em Larga Escala , Espectrometria de Massas/métodos , Camundongos , Neisseria meningitidis Sorogrupo B/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
14.
PLoS One ; 9(12): e114159, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25473968

RESUMO

There is a need for techniques capable of identifying the antigenic epitopes targeted by polyclonal antibody responses during deliberate or natural immunization. Although successful, traditional phage library screening is laborious and can map only some of the epitopes. To accelerate and improve epitope identification, we have employed massive sequencing of phage-displayed antigen-specific libraries using the Illumina MiSeq platform. This enabled us to precisely identify the regions of a model antigen, the meningococcal NadA virulence factor, targeted by serum antibodies in vaccinated individuals and to rank hundreds of antigenic fragments according to their immunoreactivity. We found that next generation sequencing can significantly empower the analysis of antigen-specific libraries by allowing simultaneous processing of dozens of library/serum combinations in less than two days, including the time required for antibody-mediated library selection. Moreover, compared with traditional plaque picking, the new technology (named Phage-based Representation OF Immuno-Ligand Epitope Repertoire or PROFILER) provides superior resolution in epitope identification. PROFILER seems ideally suited to streamline and guide rational antigen design, adjuvant selection, and quality control of newly produced vaccines. Furthermore, this method is also susceptible to find important applications in other fields covered by traditional quantitative serology.


Assuntos
Antígenos de Bactérias/genética , Epitopos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Meningite Meningocócica/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/isolamento & purificação , Epitopos/imunologia , Epitopos/isolamento & purificação , Humanos , Meningite Meningocócica/sangue , Meningite Meningocócica/microbiologia , Neisseria meningitidis/imunologia , Neisseria meningitidis/patogenicidade , Biblioteca de Peptídeos
15.
Vaccine ; 30(27): 4086-94, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22521851

RESUMO

Protective antibody responses to a single dose of 2009 pandemic vaccines have been observed in the majority of healthy subjects aged more than 3 years. These findings suggest that immune memory lymphocytes primed by previous exposure to seasonal influenza antigens are recruited in the response to A/H1N1 pandemic vaccines and allow rapid seroconversion. However, a clear dissection of the immune memory components favoring a fast response to pandemic vaccination is still lacking. Here we report the results from a clinical study where antibody, CD4+ T cell, plasmablast and memory B cell responses to one dose of an MF59-adjuvanted A/H1N1 pandemic vaccine were analyzed in healthy adults. While confirming the rapid appearance of antibodies neutralizing the A/H1N1 pandemic virus, we show here that the response is dominated by IgG-switched antibodies already in the first week after vaccination. In addition, we found that vaccination induces the rapid expansion of pre-existing CD4+ T cells and IgG-memory B lymphocytes cross-reactive to seasonal and pandemic A/H1N1 antigens. These data shed light on the different components of the immune response to the 2009 H1N1 pandemic influenza vaccination and may have implications in the design of vaccination strategies against future influenza pandemics.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Memória Imunológica , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Polissorbatos/administração & dosagem , Esqualeno/administração & dosagem , Adolescente , Adulto , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Reações Cruzadas , Feminino , Humanos , Vacinas contra Influenza/administração & dosagem , Masculino , Pessoa de Meia-Idade , Vacinação/métodos , Adulto Jovem
16.
Blood ; 109(12): 5371-9, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17332250

RESUMO

Human blood contains 2 populations of dendritic cells (DCs): plasmacytoid and myeloid (mDC). mDCs are subdivided into 3 subsets using the surface markers CD16, CD1c, and BDCA-3. Their role as pathogen sentinels and adjuvant targets was tested by phenotypic and functional analysis. We show that mDC subsets are immature and express mRNA for most toll-like receptors (TLRs), except for TLR3 in CD16-mDCs. The most represented subsets, CD16- and CD1c-mDCs, are similarly responsive to all TLR agonists. Among 31 cytokines tested, both subsets produce CXCL8 (IL-8)/tumor necrosis factor-alpha (TNF-alpha)/IL-6/CCL3 (MIP-1 alpha)/CCL4 (MIP-1beta)/IL-1 beta. CXCL8 (IL-8) is the predominant cytokine produced by CD1c-mDCs on TLR engagement, whereas all other cytokines, particularly TNF-alpha, are secreted in 10-fold to 100-fold higher amounts by CD16-mDCs. CD16-mDCs cocultured with human umbilical vein endothelial cells induce a significantly higher production of CXCL10 (IP-10), granulocyte-macrophage colony-stimulating factor, and granulocyte colony-stimulating factor than CD1c-mDCs. In addition, interleukin-3 and type I interferons are stimuli specifically for DC maturation rather than cytokine secretion, whereas TNF-alpha is almost ineffective in inducing either function, suggesting a mechanism of T-cell-DC crosstalk and of rapid induction of antigen-presenting cell function during viral infection rather than inflammation. In conclusion, CD16-mDCs show strong proinflammatory activity, whereas CD1c-mDCs appear to be mainly inducers of chemotaxis.


Assuntos
Antígenos CD1 , Células Dendríticas/fisiologia , Receptores de IgG , Comunicação Celular/imunologia , Quimiotaxia , Técnicas de Cocultura , Citocinas/biossíntese , Células Dendríticas/imunologia , Células Endoteliais/citologia , Endotélio Vascular , Humanos , Inflamação , Células Mieloides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA