RESUMO
The mammalian nervous system executes complex behaviors controlled by specialized, precisely positioned, and interacting cell types. Here, we used RNA sequencing of half a million single cells to create a detailed census of cell types in the mouse nervous system. We mapped cell types spatially and derived a hierarchical, data-driven taxonomy. Neurons were the most diverse and were grouped by developmental anatomical units and by the expression of neurotransmitters and neuropeptides. Neuronal diversity was driven by genes encoding cell identity, synaptic connectivity, neurotransmission, and membrane conductance. We discovered seven distinct, regionally restricted astrocyte types that obeyed developmental boundaries and correlated with the spatial distribution of key glutamate and glycine neurotransmitters. In contrast, oligodendrocytes showed a loss of regional identity followed by a secondary diversification. The resource presented here lays a solid foundation for understanding the molecular architecture of the mammalian nervous system and enables genetic manipulation of specific cell types.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Sistema Nervoso/metabolismo , Análise de Célula Única/métodos , Transcriptoma , Animais , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Nervoso/crescimento & desenvolvimentoRESUMO
Understanding human embryonic ventral midbrain is of major interest for Parkinson's disease. However, the cell types, their gene expression dynamics, and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly defined human cell types, including five subtypes of radial glia-like cells and four progenitors. In the mouse, two mature fetal dopaminergic neuron subtypes diversified into five adult classes during postnatal development. Cell types and gene expression were generally conserved across species, but with clear differences in cell proliferation, developmental timing, and dopaminergic neuron development. Additionally, we developed a method to quantitatively assess the fidelity of dopaminergic neurons derived from human pluripotent stem cells, at a single-cell level. Thus, our study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.
Assuntos
Neurônios Dopaminérgicos/citologia , Mesencéfalo/citologia , Mesencéfalo/embriologia , Células-Tronco Neurais/citologia , Neurogênese , Células-Tronco Pluripotentes/citologia , Animais , Linhagem Celular , Técnicas de Reprogramação Celular , Humanos , Aprendizado de Máquina , Mesencéfalo/metabolismo , Camundongos , Neuroglia/citologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodosRESUMO
RNA abundance is a powerful indicator of the state of individual cells. Single-cell RNA sequencing can reveal RNA abundance with high quantitative accuracy, sensitivity and throughput1. However, this approach captures only a static snapshot at a point in time, posing a challenge for the analysis of time-resolved phenomena such as embryogenesis or tissue regeneration. Here we show that RNA velocity-the time derivative of the gene expression state-can be directly estimated by distinguishing between unspliced and spliced mRNAs in common single-cell RNA sequencing protocols. RNA velocity is a high-dimensional vector that predicts the future state of individual cells on a timescale of hours. We validate its accuracy in the neural crest lineage, demonstrate its use on multiple published datasets and technical platforms, reveal the branching lineage tree of the developing mouse hippocampus, and examine the kinetics of transcription in human embryonic brain. We expect RNA velocity to greatly aid the analysis of developmental lineages and cellular dynamics, particularly in humans.
Assuntos
Encéfalo/citologia , Crista Neural/metabolismo , Neurônios/citologia , Splicing de RNA/genética , RNA/análise , RNA/genética , Análise de Sequência de RNA , Análise de Célula Única , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Linhagem da Célula/genética , Células Cromafins/citologia , Células Cromafins/metabolismo , Conjuntos de Dados como Assunto , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/embriologia , Hipocampo/metabolismo , Cinética , Masculino , Camundongos , Crista Neural/citologia , Neurônios/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo , Transcrição Gênica/genéticaRESUMO
Global efforts to create a molecular census of the brain using single-cell transcriptomics are producing a large catalog of molecularly defined cell types. However, spatial information is lacking and new methods are needed to map a large number of cell type-specific markers simultaneously on large tissue areas. Here, we describe a cyclic single-molecule fluorescence in situ hybridization methodology and define the cellular organization of the somatosensory cortex.
Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Hibridização in Situ Fluorescente/métodos , RNA/análise , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Córtex Somatossensorial/fisiologia , Animais , Feminino , Corantes Fluorescentes/química , Masculino , Córtex Somatossensorial/citologiaRESUMO
OBJECTIVE: Inhibition of the mammalian target of rapamycin (mTOR) pathway has been suggested as a possible antiepileptogenic strategy in temporal lobe epilepsy (TLE). Here we aim to elucidate whether mTOR inhibition has antiepileptogenic and/or antiseizure effects using different treatment strategies in the electrogenic post-status epilepticus (SE) rat model. METHODS: Effects of mTOR inhibitor rapamycin were tested using the following three treatment protocols: (1) "stop-treatment"-post-SE treatment (6 mg/kg/day) was discontinued after 3 weeks; rats were monitored for 5 more weeks thereafter, (2) "pretreatment"-rapamycin (3 mg/kg/day) was applied during 3 days preceding SE; and (3) "chronic phase-treatment"-5 days rapamycin treatment (3 mg/kg/day) in the chronic phase. We also tested curcumin, an alternative mTOR inhibitor with antiinflammatory and antioxidant effects, using chronic phase treatment. Seizures were continuously monitored using video-electroencephalography (EEG) recordings; mossy fiber sprouting, cell death, and inflammation were studied using immunohistochemistry. Blood was withdrawn regularly to assess rapamycin and curcumin levels with high performance liquid chromatography (HPLC). RESULTS: Stop-treatment led to a strong reduction of seizures during the 3-week treatment and a gradual reappearance of seizures during the following 5 weeks. Three days pretreatment did not prevent seizure development, whereas 5-day rapamycin treatment in the chronic phase reduced seizure frequency. Washout of rapamycin was slow and associated with a gradual reappearance of seizures. Rapamycin treatment (both 3 and 6 mg/kg) led to body growth reduction. Curcumin treatment did not reduce seizure frequency or lead to a decrease in body weight. SIGNIFICANCE: The present study indicates that rapamycin cannot prevent epilepsy in the electrical stimulation post-SE rat model but has seizure-suppressing properties as long as rapamycin blood levels are sufficiently high. Oral curcumin treatment had no effect on chronic seizures, possibly because it did not reach the brain at adequate levels.
Assuntos
Anticonvulsivantes/uso terapêutico , Curcumina/uso terapêutico , Estimulação Elétrica/efeitos adversos , Sirolimo/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Análise de Variância , Animais , Anticonvulsivantes/sangue , Peso Corporal/efeitos dos fármacos , Curcumina/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Esquema de Medicação , Eletroencefalografia , Hipocampo/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Sirolimo/sangue , Estado Epiléptico/sangue , Estado Epiléptico/etiologia , Fatores de Tempo , Resultado do TratamentoRESUMO
Spatial transcriptomics workflows using barcoded capture arrays are commonly used for resolving gene expression in tissues. However, existing techniques are either limited by capture array density or are cost prohibitive for large-scale atlasing. We present Nova-ST, a dense nano-patterned spatial transcriptomics technique derived from randomly barcoded Illumina sequencing flow cells. Nova-ST enables customized, low-cost, flexible, and high-resolution spatial profiling of large tissue sections. Benchmarking on mouse brain sections demonstrates significantly higher sensitivity compared to existing methods at a reduced cost.
Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Camundongos , Perfilação da Expressão Gênica/métodos , Encéfalo/metabolismo , Nanotecnologia/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
The adult human brain comprises more than a thousand distinct neuronal and glial cell types, a diversity that emerges during early brain development. To reveal the precise sequence of events during early brain development, we used single-cell RNA sequencing and spatial transcriptomics and uncovered cell states and trajectories in human brains at 5 to 14 postconceptional weeks (pcw). We identified 12 major classes that are organized as ~600 distinct cell states, which map to precise spatial anatomical domains at 5 pcw. We described detailed differentiation trajectories of the human forebrain and midbrain and found a large number of region-specific glioblasts that mature into distinct pre-astrocytes and pre-oligodendrocyte precursor cells. Our findings reveal the establishment of cell types during the first trimester of human brain development.
Assuntos
Encéfalo , Neurogênese , Primeiro Trimestre da Gravidez , Feminino , Humanos , Gravidez , Astrócitos/citologia , Encéfalo/citologia , Encéfalo/embriologia , Neuroglia , Neurônios/citologia , Atlas como Assunto , Análise da Expressão Gênica de Célula ÚnicaRESUMO
Methods to spatially profile the transcriptome are dominated by a trade-off between resolution and throughput. Here we develop a method named Enhanced ELectric Fluorescence in situ Hybridization (EEL FISH) that can rapidly process large tissue samples without compromising spatial resolution. By electrophoretically transferring RNA from a tissue section onto a capture surface, EEL speeds up data acquisition by reducing the amount of imaging needed, while ensuring that RNA molecules move straight down toward the surface, preserving single-cell resolution. We apply EEL on eight entire sagittal sections of the mouse brain and measure the expression patterns of up to 440 genes to reveal complex tissue organization. Moreover, EEL can be used to study challenging human samples by removing autofluorescent lipofuscin, enabling the spatial transcriptome of the human visual cortex to be visualized. We provide full hardware specifications, all protocols and complete software for instrument control, image processing, data analysis and visualization.
Assuntos
RNA , Transcriptoma , Humanos , Animais , Camundongos , RNA Mensageiro/genética , Hibridização in Situ Fluorescente/métodos , RNA/análise , Transcriptoma/genética , Enguias/genética , Perfilação da Expressão Gênica/métodosRESUMO
Several techniques are currently being developed for spatially resolved omics profiling, but each new method requires the setup of specific detection strategies or specialized instrumentation. Here we describe an imaging-free framework to localize high-throughput readouts within a tissue by cutting the sample into thin strips in a way that allows subsequent image reconstruction. We implemented this framework to transform a low-input RNA sequencing protocol into an imaging-free spatial transcriptomics technique (called STRP-seq) and validated it by profiling the spatial transcriptome of the mouse brain. We applied the technique to the brain of the Australian bearded dragon, Pogona vitticeps. Our results reveal the molecular anatomy of the telencephalon of this lizard, providing evidence for a marked regionalization of the reptilian pallium and subpallium. We expect that STRP-seq can be used to derive spatially resolved data from a range of other omics techniques.
Assuntos
Perfilação da Expressão Gênica/métodos , Imagem Molecular/métodos , Tomografia/métodos , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Química Encefálica , Lagartos , Camundongos , Transcriptoma/genéticaRESUMO
Multiplexed fluorescence in situ hybridization techniques have enabled cell-type identification, linking transcriptional heterogeneity with spatial heterogeneity of cells. However, inaccurate cell segmentation reduces the efficacy of cell-type identification and tissue characterization. Here, we present a method called Spot-based Spatial cell-type Analysis by Multidimensional mRNA density estimation (SSAM), a robust cell segmentation-free computational framework for identifying cell-types and tissue domains in 2D and 3D. SSAM is applicable to a variety of in situ transcriptomics techniques and capable of integrating prior knowledge of cell types. We apply SSAM to three mouse brain tissue images: the somatosensory cortex imaged by osmFISH, the hypothalamic preoptic region by MERFISH, and the visual cortex by multiplexed smFISH. Here, we show that SSAM detects regions occupied by known cell types that were previously missed and discovers new cell types.
Assuntos
Encéfalo/citologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Hibridização in Situ Fluorescente/métodos , Análise de Célula Única/métodos , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Simulação por Computador , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Área Pré-Óptica/citologia , Área Pré-Óptica/diagnóstico por imagem , Córtex Somatossensorial/citologia , Córtex Somatossensorial/diagnóstico por imagem , Transcriptoma/genética , Córtex Visual/citologia , Córtex Visual/diagnóstico por imagemRESUMO
Rheumatoid arthritis-associated joint pain is frequently observed independent of disease activity, suggesting unidentified pain mechanisms. We demonstrate that antibodies binding to cartilage, specific for collagen type II (CII) or cartilage oligomeric matrix protein (COMP), elicit mechanical hypersensitivity in mice, uncoupled from visual, histological and molecular indications of inflammation. Cartilage antibody-induced pain-like behavior does not depend on complement activation or joint inflammation, but instead on tissue antigen recognition and local immune complex (IC) formation. smFISH and IHC suggest that neuronal Fcgr1 and Fcgr2b mRNA are transported to peripheral ends of primary afferents. CII-ICs directly activate cultured WT but not FcRγ chain-deficient DRG neurons. In line with this observation, CII-IC does not induce mechanical hypersensitivity in FcRγ chain-deficient mice. Furthermore, injection of CII antibodies does not generate pain-like behavior in FcRγ chain-deficient mice or mice lacking activating FcγRs in neurons. In summary, this study defines functional coupling between autoantibodies and pain transmission that may facilitate the development of new disease-relevant pain therapeutics.
Assuntos
Anticorpos Monoclonais/imunologia , Complexo Antígeno-Anticorpo/metabolismo , Artralgia/imunologia , Artrite Reumatoide/imunologia , Autoanticorpos/imunologia , Cartilagem/imunologia , Neurônios/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Artralgia/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Autoanticorpos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Proteína de Matriz Oligomérica de Cartilagem/imunologia , Colágeno Tipo II/imunologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Receptores de IgG/deficiência , Receptores de IgG/genéticaRESUMO
The stereotyped spatial architecture of the brain is both beautiful and fundamentally related to its function, extending from gross morphology to individual neuron types, where soma position, dendritic architecture, and axonal projections determine their roles in functional circuitry. Our understanding of the cell types that make up the brain is rapidly accelerating, driven in particular by recent advances in single-cell transcriptomics. However, understanding brain function, development, and disease will require linking molecular cell types to morphological, physiological, and behavioral correlates. Emerging spatially resolved transcriptomic methods promise to fill this gap by localizing molecularly defined cell types in tissues, with simultaneous detection of morphology, activity, or connectivity. Here, we review the requirements for spatial transcriptomic methods toward these goals, consider the challenges ahead, and describe promising applications.