Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068953

RESUMO

Detecting copy number variations (CNVs) and alterations (CNAs) in the BRCA1 and BRCA2 genes is essential for testing patients for targeted therapy applicability. However, the available bioinformatics tools were initially designed for identifying CNVs/CNAs in whole-genome or -exome (WES) NGS data or targeted NGS data without adaptation to the BRCA1/2 genes. Most of these tools were tested on sample cohorts of limited size, with their use restricted to specific library preparation kits or sequencing platforms. We developed BRACNAC, a new tool for detecting CNVs and CNAs in the BRCA1 and BRCA2 genes in NGS data of different origin. The underlying mechanism of this tool involves various coverage normalization steps complemented by CNV probability evaluation. We estimated the sensitivity and specificity of our tool to be 100% and 94%, respectively, with an area under the curve (AUC) of 94%. The estimation was performed using the NGS data obtained from 213 ovarian and prostate cancer samples tested with in-house and commercially available library preparation kits and additionally using multiplex ligation-dependent probe amplification (MLPA) (12 CNV-positive samples). Using freely available WES and targeted NGS data from other research groups, we demonstrated that BRACNAC could also be used for these two types of data, with an AUC of up to 99.9%. In addition, we determined the limitations of the tool in terms of the minimum number of samples per NGS run (≥20 samples) and the minimum expected percentage of CNV-negative samples (≥80%). We expect that our findings will improve the efficacy of BRCA1/2 diagnostics. BRACNAC is freely available at the GitHub server.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias Ovarianas , Neoplasias da Próstata , Feminino , Humanos , Masculino , Proteína BRCA1/genética , Proteína BRCA2/genética , Genes BRCA2 , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias da Próstata/genética
2.
J Biochem ; 170(5): 675-681, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34382083

RESUMO

Next-generation sequencing (NGS)-library preparation for whole-genome sequencing (WGS) starts with DNA fragmentation, and sonication is a physical approach used most often due to its simplicity and reproducibility. However, the commercially available Covaris instrument has a high price for both the device and consumables. Here, we describe our in-house method of DNA shearing by sonication with small (100-600 µm) glass beads and an ultrasonic bath. The fragmentation conditions were optimized for the bacterial WGS with ∼550-bp fragment size (the ultrasonic bath water temperature 5-10°C, glass beads 0.06 g, the fragmentation time 50 s) and for human DNA with ∼250 bp (fragmentation with the same parameters for 4 min). Fragmentation results were compared with the Covaris instrument for preparing several bacterial NGS libraries for Illumina NGS platforms by several characteristics. We obtained close mean fragment lengths (523-623 versus 480-646), similar mono- and dinucleotide specificity of shearing, and comparable indicators of read alignment and de novo assembly for both methods. Thus, the described method is a new fast, and effective DNA fragmentation approach that can be used in different WGS applications.


Assuntos
Bactérias/genética , Fragmentação do DNA , DNA/química , Biblioteca Gênica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento Completo do Genoma/métodos , DNA/sangue , Humanos , Ondas Ultrassônicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA