Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Faraday Discuss ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779946

RESUMO

Uncovering the role of reaction intermediates is crucial to developing an understanding of heterogeneous catalysis because catalytic reactions often involve complex networks of elementary steps. Identifying the reaction intermediates is often difficult because their short lifetimes and low concentrations make it difficult to observe them with surface sensitive spectroscopic techniques. In this paper we report a different approach to identify intermediates for the formic acid decomposition reaction on Pd(111) and Pd(332) based on accurate measurements of isotopologue specific thermal reaction rates. At low surface temperatures (∼400 K) CO2 formation is the major reaction pathway. The CO2 kinetic data show this occurs via two temporally resolved reaction processes. Thus, there must be two parallel pathways which we attribute to the participation of two intermediate species in the reaction. Isotopic substitution reveals large and isotopologue specific kinetic isotope effects that allow us to identify the two key intermediates as bidentate formate and carboxyl. The decomposition of the bidentate formate is substantially slower than that of carboxyl. On Pd(332), at high surface temperatures (643 K to 693 K) we observe both CO and CO2 production. The observation of CO formation reinforces the conclusion of calculations that suggest the carboxyl intermediate plays a major role in the water-gas shift reaction, where carboxyl exhibits temperature dependent branching between CO2 and CO.

2.
Nature ; 558(7709): 280-283, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899477

RESUMO

Catalysts are widely used to increase reaction rates. They function by stabilizing the transition state of the reaction at their active site, where the atomic arrangement ensures favourable interactions 1 . However, mechanistic understanding is often limited when catalysts possess multiple active sites-such as sites associated with either the step edges or the close-packed terraces of inorganic nanoparticles2-4-with distinct activities that cannot be measured simultaneously. An example is the oxidation of carbon monoxide over platinum surfaces, one of the oldest and best studied heterogeneous reactions. In 1824, this reaction was recognized to be crucial for the function of the Davy safety lamp, and today it is used to optimize combustion, hydrogen production and fuel-cell operation5,6. The carbon dioxide products are formed in a bimodal kinetic energy distribution7-13; however, despite extensive study 5 , it remains unclear whether this reflects the involvement of more than one reaction mechanism occurring at multiple active sites12,13. Here we show that the reaction rates at different active sites can be measured simultaneously, using molecular beams to controllably introduce reactants and slice ion imaging14,15 to map the velocity vectors of the product molecules, which reflect the symmetry and the orientation of the active site 16 . We use this velocity-resolved kinetics approach to map the oxidation rates of carbon monoxide at step edges and terrace sites on platinum surfaces, and find that the reaction proceeds through two distinct channels11-13: it is dominated at low temperatures by the more active step sites, and at high temperatures by the more abundant terrace sites. We expect our approach to be applicable to a wide range of heterogeneous reactions and to provide improved mechanistic understanding of the contribution of different active sites, which should be useful in the design of improved catalysts.

3.
J Phys Chem A ; 127(1): 142-152, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36583672

RESUMO

Velocity-resolved kinetics is used to measure the thermal rate of formic acid desorption from Pd(111) between 228 and 273 K for four isotopologues: HCOOH, HCOOD, DCOOH, DCOOD. Upon molecular adsorption, formic acid undergoes decomposition to CO2 and H2 and thermal desorption. To disentangle the contributions of individual processes, we implement a mass-balance-based calibration procedure from which the branching ratio between desorption and decomposition for formic acid is determined. From experimentally derived elementary desorption rate constants, we obtain the binding energy 639 ± 8 meV and the diffusion barrier 370 ± 130 meV using the detailed balance rate model (DBRM). The DBRM explains the observed kinetic isotope effects.

4.
J Am Chem Soc ; 144(47): 21791-21799, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36399044

RESUMO

A detailed velocity-resolved kinetics study of NH3 thermal desorption rates from p(2 × 2) O/Pt(111) is presented. We find a large reduction in the NH3 desorption rate due to adsorption of O-atoms on Pt(111). A physical model describing the interactions between adsorbed NH3 and O-atoms explains these observations. By fitting the model to the derived desorption rate constants, we find an NH3 stabilization on p(2 × 2) O/Pt(111) of 0.147-0.014+0.023 eV compared to Pt(111) and a rotational barrier of 0.084-0.022+0.049 eV, which is not present on Pt(111). The model also quantitatively predicts the steric hindrance of NH3 diffusion on Pt(111) due to co-adsorbed O-atoms. The derived diffusion barrier of NH3 on p(2 × 2) O/Pt(111) is 1.10-0.13+0.22 eV, which is 0.39-0.14+0.22 eV higher than that on pristine Pt(111). We find that Perdew Burke Ernzerhof (PBE) and revised Perdew Burke Ernzerhof (RPBE) exchange-correlation functionals are unable to reproduce the experimentally observed NH3-O adsorbate-adsorbate interactions and NH3 binding energies at Pt(111) and p(2 × 2) O/Pt(111), which indicates the importance of dispersion interactions for both systems.


Assuntos
Difusão , Cinética , Adsorção
5.
J Am Chem Soc ; 143(43): 18305-18316, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672570

RESUMO

We report accurate time-resolved measurements of NH3 desorption from Pt(111) and Pt(332) and use these results to determine elementary rate constants for desorption from steps, from (111) terrace sites and for diffusion on (111) terraces. Modeling the extracted rate constants with transition state theory, we find that conventional models for partition functions, which rely on uncoupled degrees of freedom (DOFs), are not able to reproduce the experimental observations. The results can be reproduced using a more sophisticated partition function, which couples DOFs that are most sensitive to NH3 translation parallel to the surface; this approach yields accurate values for the NH3 binding energy to Pt(111) (1.13 ± 0.02 eV) and the diffusion barrier (0.71 ± 0.04 eV). In addition, we determine NH3's binding energy preference for steps over terraces on Pt (0.23 ± 0.03 eV). The ratio of the diffusion barrier to desorption energy is ∼0.65, in violation of the so-called 12% rule. Using our derived diffusion/desorption rates, we explain why established rate models of the Ostwald process incorrectly predict low selectivity and yields of NO under typical reactor operating conditions. Our results suggest that mean-field kinetics models have limited applicability for modeling the Ostwald process.

6.
J Phys Chem A ; 125(34): 7396-7405, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34427437

RESUMO

Understanding heterogeneous catalysis is based on knowing the energetic stability of adsorbed reactants, intermediates, and products as well as the energetic barriers separating them. We report an experimental determination of the barrier to CO2 functionalization to form bidentate formate on a hydrogenated Pt surface and the corresponding reaction energy. This determination was possible using velocity resolved kinetics, which simultaneously provides information about both the dynamics and rates of surface chemical reactions. In these experiments, a pulse of isotopically labeled formic acid (DCOOH) doses the Pt surface rapidly forming bidentate formate (DCO*O*). We then record the (much slower) rate of decomposition of DCO*O* to form adsorbed D* and gas phase CO2. We establish the reaction mechanism by dosing with O2 to form adsorbed O*, which efficiently converts H* or D* to gas phase water. H2O is formed immediately reflecting rapid loss of the acidic proton associated with formation of formate, while D2O formation proceeds more slowly and on the same time scale as the CO2 production. The temperature dependence of the reaction rate yields an activation energy that reflects the energy of the transition state with respect to DCO*O*. The derived heat of formation for DCO*O* on Pt(111) agrees well with results of microcalorimetry. The maximum release of translational energy of the formed CO2 provides a measure of the energy of the transition state with respect to the products and the barrier to the reverse process, functionalization of CO2. The comparison between the results on Pt(111) and Pt(332) shows that the barrier for CO2 functionalization is reduced by the presence of steps. The approach taken here could provide a method to optimize catalysts for CO2 functionalization.

7.
Rep Prog Phys ; 82(9): 096401, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31304916

RESUMO

The dream of theoretical surface chemistry is to predict the outcome of reactions in order to find the ideal catalyst for a certain application. Having a working ab initio theory in hand would not only enable these predictions but also provide insights into the mechanisms of surface reactions. The development of theoretical models can be assisted by experimental studies providing benchmark data. Though for some reactions a quantitative agreement between experimental observations and theoretical calculations has been achieved, theoretical surface chemistry is in general still far away from gaining predictive power. Here we review recent experimental developments towards the understanding of surface reactions. It is demonstrated how quantum-state resolved scattering experiments on reactive and nonreactive systems can be used to test front-running theoretical approaches. Two challenges for describing dynamics at surfaces are addressed: nonadiabaticity in diatomic molecule surface scattering and the increasing system size when observing and describing the dynamics of polyatomic molecules at surfaces. Finally recent experimental studies on reactive systems are presented. It is shown how elementary steps in a complex surface reaction can be revealed experimentally.

8.
Chem Rec ; 14(6): 1116-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25316264

RESUMO

A systematic review and analysis of the most stable spatial arrangements of n carbon, n oxygen, and 2n hydrogen atoms including vibrational zero-point energy up to n = 5 shows that small-molecule aggregates win, typically followed by thermally unstable molecules, before kinetically stable molecules and finally carbohydrates are found. Near n ≈ 60 a crossover to carbon allotropes and ice as the global minimum structure is expected and the asymptotic limit is most likely graphite and ice. Implications for astrochemical and fermentation processes are discussed. Density functionals like B3LYPD3 are found to describe these energy sequences quite poorly, mostly due to an overestimated stability of carbon in high oxidation states.


Assuntos
Carboidratos/química , Teoria Quântica
9.
J Phys Chem C Nanomater Interfaces ; 126(34): 14500-14508, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36081903

RESUMO

Thermal recombinative desorption rates of HD on Pd(111) and Pd(332) are reported from transient kinetic experiments performed between 523 and 1023 K. A detailed kinetic model accurately describes the competition between recombination of surface-adsorbed hydrogen and deuterium atoms and their diffusion into the bulk. By fitting the model to observed rates, we derive the dissociative adsorption energies (E 0, ads H2 = 0.98 eV; E 0, ads D2 = 1.00 eV; E 0, ads HD = 0.99 eV) as well as the classical dissociative binding energy ϵads = 1.02 ± 0.03 eV, which provides a benchmark for electronic structure theory. In a similar way, we obtain the classical energy required to move an H or D atom from the surface to the bulk (ϵsb = 0.46 ± 0.01 eV) and the isotope specific energies, E 0, sb H = 0.41 eV and E 0, sb D = 0.43 eV. Detailed insights into the process of transient bulk diffusion are obtained from kinetic Monte Carlo simulations.

10.
Science ; 377(6604): 394-398, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35862529

RESUMO

There is wide interest in developing accurate theories for predicting rates of chemical reactions that occur at metal surfaces, especially for applications in industrial catalysis. Conventional methods contain many approximations that lack experimental validation. In practice, there are few reactions where sufficiently accurate experimental data exist to even allow meaningful comparisons to theory. Here, we present experimentally derived thermal rate constants for hydrogen atom recombination on platinum single-crystal surfaces, which are accurate enough to test established theoretical approximations. A quantum rate model is also presented, making possible a direct evaluation of the accuracy of commonly used approximations to adsorbate entropy. We find that neglecting the wave nature of adsorbed hydrogen atoms and their electronic spin degeneracy leads to a 10× to 1000× overestimation of the rate constant for temperatures relevant to heterogeneous catalysis. These quantum effects are also found to be important for nanoparticle catalysts.

11.
J Phys Chem C Nanomater Interfaces ; 125(21): 11773-11781, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34276859

RESUMO

We report nitric oxide (NO) desorption rates from Pd(111) and Pd(332) surfaces measured with velocity-resolved kinetics. The desorption rates at the surface temperatures from 620 to 800 K span more than 3 orders of magnitude, and competing processes, like dissociation, are absent. Applying transition state theory (TST) to model experimental data leads to the NO binding energy E 0 = 1.766 ± 0.024 eV and diffusion barrier D T = 0.29 ± 0.11 eV on the (111) terrace and the stabilization energy for (110)-steps ΔE ST = 0.060-0.030 +0.015 eV. These parameters provide valuable benchmarks for theory.

12.
ACS Catal ; 10(23): 14056-14066, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33343999

RESUMO

Up to now, methods for measuring rates of reactions on catalysts required long measurement times involving signal averaging over many experiments. This imposed a requirement that the catalyst return to its original state at the end of each experiment-a complete reversibility requirement. For real catalysts, fulfilling the reversibility requirement is often impossible-catalysts under reaction conditions may change their chemical composition and structure as they become activated or while they are being poisoned through use. It is therefore desirable to develop high-speed methods where transient rates can be quickly measured while catalysts are changing. In this work, we present velocity-resolved kinetics using high-repetition-rate pulsed laser ionization and high-speed ion imaging detection. The reaction is initiated by a single molecular beam pulse incident at the surface, and the product formation rate is observed by a sequence of pulses produced by a high-repetition-rate laser. Ion imaging provides the desorbing product flux (reaction rate) as a function of reaction time for each laser pulse. We demonstrate the principle of this approach by rate measurements on two simple reactions: CO desorption from and CO oxidation on the 332 facet of Pd. This approach overcomes the time-consuming scanning of the delay between CO and laser pulses needed in past experiments and delivers a data acquisition rate that is 10-1000 times higher. We are able to record kinetic traces of CO2 formation while a CO beam titrates oxygen atoms from an O-saturated surface. This approach also allows measurements of reaction rates under diffusion-controlled conditions.

13.
Science ; 369(6510): 1461-1465, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32943520

RESUMO

Adsorption involves molecules colliding at the surface of a solid and losing their incidence energy by traversing a dynamical pathway to equilibrium. The interactions responsible for energy loss generally include both chemical bond formation (chemisorption) and nonbonding interactions (physisorption). In this work, we present experiments that revealed a quantitative energy landscape and the microscopic pathways underlying a molecule's equilibration with a surface in a prototypical system: CO adsorption on Au(111). Although the minimum energy state was physisorbed, initial capture of the gas-phase molecule, dosed with an energetic molecular beam, was into a metastable chemisorption state. Subsequent thermal decay of the chemisorbed state led molecules to the physisorption minimum. We found, through detailed balance, that thermal adsorption into both binding states was important at all temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA