Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Multiscale Model Simul ; 18(2): 1053-1075, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34456639

RESUMO

The mechanism of gas transport across cell membranes remains a topic of considerable interest, particularly regarding the extent to which lipids vs. specific membrane proteins provide conduction pathways. Studies of transmembrane (CO2) transport often rely on data collected under controlled conditions, using pH-sensitive microelectrodes at the extracellular surface to record changes due to extracellular CO2 diffusion and reactions. Although recent detailed computational models can predict a qualitatively correct behavior, a mismatch between the dynamical ranges of the predicted and observed pH curves raises the question whether the discrepancy may be due to a bias introduced by the pH electrode itself. More specifically, it is reasonable to ask whether bringing the electrode tip near or in contact with the membrane creates a local microenvironment between the electrode tip and the membrane, so that the measured data refer to the microenvironment rather than to the free surface. Here, we introduce a detailed computational model, designed to address this question. We find that, as long as a zone of free diffusion exists between the tip and the membrane, the microenvironment behaves effectively as the free membrane. However, according to our model, when the tip contacts the membrane, partial quenching of extracellular diffusion by the electrode rim leads to a significant increase in the pH dynamics under the electrode, matching values measured in physiological experiments. The computational schemes for the model predictions are based on semi-discretization by a finite-element method, and an implicit-explicit time integration scheme to capture the different time scales of the system.

2.
Cell Tissue Res ; 358(2): 433-42, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25012520

RESUMO

During the formation of dental enamel, maturation-stage ameloblasts express ion-transporting transmembrane proteins. The SLC4 family of ion-transporters regulates intra- and extracellular pH in eukaryotic cells by cotransporting HCO3 (-) with Na(+). Mutation in SLC4A4 (coding for the sodium-bicarbonate cotransporter NBCe1) induces developmental defects in human and murine enamel. We have hypothesized that NBCe1 in dental epithelium is engaged in neutralizing protons released during crystal formation in the enamel space. We immunolocalized NBCe1 protein in wild-type dental epithelium and examined the effect of the NBCe1-null mutation on enamel formation in mice. Ameloblasts expressed gene transcripts for NBCe1 isoforms B/D/C/E. In wild-type mice, weak to moderate immunostaining for NBCe1 with antibodies that recognized isoforms A/B/D/E and isoform C was seen in ameloblasts at the secretory stage, with no or low staining in the early maturation stage but moderate to high staining in the late maturation stage. The papillary layer showed the opposite pattern being immunostained prominently at the early maturation stage but with gradually less staining at the mid- and late maturation stages. In NBCe1 (-/-) mice, the ameloblasts were disorganized, the enamel being thin and severely hypomineralized. Enamel organs of CFTR (-/-) and AE2a,b (-/-) mice (CFTR and AE2 are believed to be pH regulators in ameloblasts) contained higher levels of NBCe1 protein than wild-type mice. Thus, the expression of NBCe1 in ameloblasts and the papillary layer cell depends on the developmental stage and possibly responds to pH changes.


Assuntos
Órgão do Esmalte/citologia , Órgão do Esmalte/embriologia , Simportadores de Sódio-Bicarbonato/metabolismo , Ameloblastos/citologia , Ameloblastos/metabolismo , Amelogênese , Animais , Western Blotting , Calcificação Fisiológica/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo , Cricetinae , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Órgão do Esmalte/diagnóstico por imagem , Órgão do Esmalte/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Incisivo/metabolismo , Mandíbula/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Simportadores de Sódio-Bicarbonato/deficiência , Simportadores de Sódio-Bicarbonato/genética , Regulação para Cima/genética , Microtomografia por Raio-X
3.
Neuroscience ; 155(3): 818-32, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18582537

RESUMO

The activity of HCO(3)(-) transporters contributes to the acid-base environment of the nervous system. In the present study, we used in situ hybridization, immunoblotting, immunohistochemistry, and immunogold electron microscopy to localize electrogenic Na/bicarbonate cotransporter NBCe1 splice variants (-A, -B, and -C) in rat brain. The in situ hybridization data are consistent with NBCe1-B and -C, but not -A, being the predominant NBCe1 variants in brain, particularly in the cerebellum, hippocampus, piriform cortex, and olfactory bulb. An antisense probe to the B and C variants strongly labeled granule neurons in the dentate gyrus of the hippocampus, and cells in the granule layer and Purkinje layer (e.g. Bergmann glia) of the cerebellum. Weaker labeling was observed in the pyramidal layer of the hippocampus and in astrocytes throughout the brain. Similar, but weaker labeling was obtained with an antisense probe to the A and B variants. In immunoblot studies, antibodies to the A and B variants (alphaA/B) and C variant (alphaC) labeled approximately 130-kDa proteins in various brain regions. From immunohistochemistry data, both alphaA/B and alphaC exhibited diffuse labeling throughout brain, but alphaA/B labeling was more intracellular and punctate. Based on co-localization studies with antibodies to neuronal or astrocytic markers, alphaA/B labeled neurons in the pyramidal layer and dentate gyrus of the hippocampus, as well as cortex. alphaC labeled glia surrounding neurons (and possibly neurons) in the neuropil of the Purkinje cell layer of the cerebellum, the pyramidal cell layer and dentate gyrus of the hippocampus, and the cortex. According to electron microscopy data from the cerebellum, alphaA/B primarily labeled neurons intracellularly and alphaC labeled astrocytes at the plasma membrane. In summary, the B and C variants are the predominant NBCe1 variants in rat brain and exhibit different localization profiles.


Assuntos
Encéfalo/metabolismo , Isoformas de Proteínas/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Animais , Encéfalo/citologia , Microscopia Imunoeletrônica/métodos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/ultraestrutura , Isoformas de Proteínas/genética , Ratos , Simportadores de Sódio-Bicarbonato/genética
4.
Neuroscience ; 151(2): 374-85, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18061361

RESUMO

NCBE (SLC4A10) is a member of the SLC4 family of bicarbonate transporters, several of which play important roles in intracellular-pH regulation and transepithelial HCO(3)(-) transport. Here we characterize a new antibody that was generated in rabbit against a fusion protein consisting of maltose-binding protein and the first 135 amino acids (aa) of the N-terminus of human NCBE. Western blotting--both of purified peptides representing the initial approximately 120 aa of the transporters and of full-length transporters expressed in Xenopus oocytes--demonstrated that the antibody is specific for NCBE versus the two most closely related proteins, NDCBE (SLC4A8) and NBCn1 (SLC4A7). Western blotting of tissue in four regions of adult mouse brain indicates that NCBE is expressed most abundantly in cerebral cortex (CX), cerebellum (CB) and hippocampus (HC), and less so in subcortex (SCX). NCBE protein was present in CX, CB, and HC microdissected to avoid choroid plexus. Immunocytochemistry shows that NCBE is present at the basolateral membrane of embryonic day 18 (E18) fetal and adult choroid plexus. NCBE protein is present by Western blot and immunocytochemistry in cultured and freshly dissociated HC neurons but not astrocytes. By Western blot, nearly all NCBE in mouse and rat brain is highly N-glycosylated (approximately 150 kDa). PNGase F reduces the molecular weight (MW) of natural NCBE in mouse brain or human NCBE expressed in oocytes to approximately the predicted MW of the unglycosylated protein. In oocytes, mutating any one of the three consensus N-glycosylation sites reduces glycosylation of the other two, and the triple mutant exhibits negligible functional expression.


Assuntos
Anticorpos/química , Química Encefálica/fisiologia , Antiportadores de Cloreto-Bicarbonato/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Animais , Western Blotting , Química Encefálica/genética , Células Cultivadas , Antiportadores de Cloreto-Bicarbonato/química , Vetores Genéticos , Glicosilação , Proteínas de Fluorescência Verde/genética , Humanos , Imuno-Histoquímica , Camundongos , Dados de Sequência Molecular , Peso Molecular , Mutagênese Sítio-Dirigida , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Ratos , Proteínas Recombinantes de Fusão/farmacologia , Reprodutibilidade dos Testes , Simportadores de Sódio-Bicarbonato/química , Especificidade da Espécie , Distribuição Tecidual , Xenopus laevis
5.
Neuroscience ; 153(1): 162-74, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18359573

RESUMO

The Na(+)-driven Cl-HCO(3) exchanger (NDCBE or SLC4A8) is a member of the solute carrier 4 (SLC4) family of HCO(3)(-) transporters, which includes products of 10 genes with similar sequences. Most SLC4 members play important roles in regulating intracellular pH (pH(i)). Physiological studies suggest that NDCBE is a major pH(i) regulator in at least hippocampal (HC) pyramidal neurons. We generated a polyclonal rabbit antibody directed against the first 18 residues of the cytoplasmic N terminus (Nt) of human NDCBE. By Western blotting, the antibody distinguishes NDCBE-as a purified Nt peptide or a full-length transporter (expressed in Xenopus oocytes)-from other Na(+)-coupled HCO(3)(-) transporters. By Western blotting, the antiserum recognizes an approximately 135-kDa band in several brain regions of adult mice: the cerebral cortex (CX), subcortex (SCX), cerebellum (CB), and HC. In CX, PNGase F treatment reduces the molecular weight to approximately 116 kDa. By immunocytochemistry, affinity-purified (AP) NDCBE antibody stains the plasma membrane of neuron cell bodies and processes of rat HC neurons in primary culture as well as freshly dissociated mouse HC neurons. The AP antibody does not detect substantial NDCBE levels in freshly dissociated HC astrocytes, or astrocytes in HC or CB sections. By immunohistochemistry, the AP antibody recognizes high levels of NDCBE in neurons of CX, HC (including pyramidal neurons in Cornu Ammonis (CA)1-3 and dentate gyrus), substantial nigra, medulla, cerebellum (especially Purkinje and granular cells), and the basolateral membrane of fetal choroid plexus. Thus, NDCBE is in a position to contribute substantially to pH(i) regulation in multiple CNS neurons.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Animais , Especificidade de Anticorpos , Encéfalo/citologia , Células Cultivadas , Plexo Corióideo/citologia , Plexo Corióideo/metabolismo , Feminino , Humanos , Concentração de Íons de Hidrogênio , Imuno-Histoquímica/métodos , Líquido Intracelular/metabolismo , Camundongos , Coelhos , Ratos , Simportadores de Sódio-Bicarbonato/química , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/imunologia , Simportadores de Sódio-Bicarbonato/isolamento & purificação
6.
J Clin Invest ; 96(5): 2373-9, 1995 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-7593625

RESUMO

A spatial segregation of ion transport processes between crypt and surface epithelial cells is well-accepted and integrated into physiological and pathophysiological paradigms of small and large intestinal function: Absorptive processes are believed to be located in surface (and villous) cells, whereas secretory processes are believed to be present in crypt cells. Validation of this model requires direct determination of fluid movement in intestinal crypts. This study describes the adaptation of techniques from renal tubule microperfusion to hand-dissect and perfuse single, isolated crypts from rat distal colon to measure directly fluid movement. Morphologic analyses of the isolated crypt preparation revealed no extraepithelial cellular elements derived from the lamina propria, including myofibroblasts. In the basal state, crypts exhibited net fluid absorption (mean net fluid movement = 0.34 +/- 0.01 nl.mm-1.min-1), which was Na+ and partially HCO3- dependent. Addition of 1 mM dibutyryl-cyclic AMP, 60 nM vasoactive intestinal peptide, or 0.1 mM acetylcholine to the bath (serosal) solution reversibly induced net fluid secretion (net fluid movement approximately -0.35 +/- 0.01 nl.mm-1.min-1). These observations permit speculation that absorption is a constitutive transport function in crypt cells and that secretion by crypt cells is regulated by one or more neurohumoral agonists that are released in situ from lamina propria cells. The functional, intact polarized crypt described here that both absorbs and secretes will permit future studies that dissect the mechanisms that govern fluid and electrolyte movement in the colonic crypt.


Assuntos
Colo/fisiologia , Absorção Intestinal/fisiologia , Animais , Polaridade Celular , Colo/citologia , AMP Cíclico/farmacologia , Técnicas In Vitro , Mucosa Intestinal/fisiologia , Masculino , Perfusão , Ratos , Ratos Sprague-Dawley
7.
FASEB J ; 20(12): 1974-81, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17012249

RESUMO

We report here the application of a previously described method to directly determine the CO2 permeability (P(CO2)) of the cell membranes of normal human red blood cells (RBCs) vs. those deficient in aquaporin 1 (AQP1), as well as AQP1-expressing Xenopus laevis oocytes. This method measures the exchange of (18)O between CO2, HCO3(-), and H2O in cell suspensions. In addition, we measure the alkaline surface pH (pH(S)) transients caused by the dominant effect of entry of CO2 vs. HCO3(-) into oocytes exposed to step increases in [CO2]. We report that 1) AQP1 constitutes the major pathway for molecular CO2 in human RBCs; lack of AQP1 reduces P(CO2) from the normal value of 0.15 +/- 0.08 (SD; n=85) cm/s by 60% to 0.06 cm/s. Expression of AQP1 in oocytes increases P(CO2) 2-fold and doubles the alkaline pH(S) gradient. 2) pCMBS, an inhibitor of the AQP1 water channel, reduces P(CO2) of RBCs solely by action on AQP1 as it has no effect in AQP1-deficient RBCs. 3) P(CO2) determinations of RBCs and pH(S) measurements of oocytes indicate that DIDS inhibits the CO2 pathway of AQP1 by half. 4) RBCs have at least one other DIDS-sensitive pathway for CO2. We conclude that AQP1 is responsible for 60% of the high P(CO2) of red cells and that another, so far unidentified, CO2 pathway is present in this membrane that may account for at least 30% of total P(CO2).


Assuntos
Aquaporina 1/metabolismo , Dióxido de Carbono/metabolismo , Membrana Eritrocítica/metabolismo , Animais , Bicarbonatos/metabolismo , Transporte Biológico , Permeabilidade da Membrana Celular/fisiologia , Membrana Eritrocítica/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Oócitos , Isótopos de Oxigênio/metabolismo , Xenopus laevis
8.
J Gen Physiol ; 85(3): 325-45, 1985 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-2985734

RESUMO

The intracellular pH-regulating mechanism of the squid axon was examined for its dependence on the concentrations of external Na+ and HCO3-, always at an external pH (pHo) of 8.0. Axons having an initial intracellular pH (pHi) of approximately 7.4 were internally dialyzed with a solution of pH 6.5 that contained 400 mM Cl- and no Na+. After pHi had fallen to approximately 6.6, dialysis was halted, thereby returning control of pHi to the axon. With external Na+ and HCO-3 present, intracellular pH (pHi) increased because of the activity of the pHi-regulating system. The acid extrusion rate (i.e., equivalent efflux of H+, JH) is the product of the pHi recovery rate, intracellular buffering power, and the volume-to-surface ratio. The [HCO3-]o dependence of JH was examined at three fixed levels of [Na+]o: 425, 212, and 106 mM. In all three cases, the apparent Jmax was approximately 19 pmol X cm-2 X s-1. However, the apparent Km (HCO3-) was approximately inversely proportional to [Na+]o, rising from 2.6 to 5.4 to 9.7 mM as [Na+]o was lowered from 425 to 212 to 106 mM, respectively. The [Na+]o dependence of JH was similarly examined at three fixed levels of [HCO3-]o: 12, 6, and 3 mM. The Jmax values did not vary significantly from those in the first series of experiments. The apparent Km (Na+), however, was approximately inversely related to [HCO3-]o, rising from 71 to 174 to 261 mM as [HCO3-]o was lowered from 12 to 6 to 3 mM, respectively. These results agree with the predictions of the ion-pair model of acid extrusion, which has external Na+ and CO3= combining to form the ion pair NaCO3-, which then exchanges for internal Cl-. When the JH data are replotted as a function of [NaCO3-]o, data from all six groups of experiments fall along the same Michaelis-Menten curve, with an apparent Km (NaCO3-) of 80 microM. The ordered and random binding of Na+ and CO3= cannot be ruled out as possible models, but are restricted in allowable combinations of rate constants.


Assuntos
Equilíbrio Ácido-Base , Axônios/metabolismo , Bicarbonatos/metabolismo , Sódio/metabolismo , Animais , Permeabilidade da Membrana Celular , Decapodiformes , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Modelos Neurológicos
9.
J Gen Physiol ; 92(3): 395-412, 1988 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-3225555

RESUMO

We monitored intracellular pH (pHi) in isolated perfused S3 segments of the rabbit proximal tubule, and studied the effect of acetate (Ac-) transport on pHi. pHi was calculated from the absorbance spectrum of 4',5'-dimethyl-5-(and 6) carboxyfluorescein trapped intracellularly. All solutions were nominally HCO3(-)-free. Removal of 10 mM Ac- from bath and lumen caused pHi to rapidly rise by approximately 0.2, and then to decline more slowly to a value approximately 0.35 below the initial one. Removal of only luminal Ac- caused pHi changes very similar to those resulting from bilateral removal of Ac-. When Ac- was removed from bath only, pHi rose rapidly at first, and then continued to rise more slowly. Readdition of Ac- to bath caused pHi to rapidly fall to a value slightly higher than the one prevailing before the removal of Ac- from the bath. In experiments in which Ac- was first removed from both bath and lumen, readdition of 10 mM Ac- to only lumen caused a rapid but small acidification, followed by a slower alkalinization that brought the pHi near the value that prevailed before the bilateral removal of Ac-. The alkalinizing effects caused by the readdition of 10 or 0.5 mM Ac- were indistinguishable. When Ac- was returned to only lumen in the absence of luminal Na+, there was a small and rapid pHi decrease, but no pHi recovery. Removal of Na+ from bath did not affect the pHi transients caused by the addition of Ac- to lumen. In experiments in which Ac- was first removed bilaterally, readdition of Ac- to only bath caused a large and sustained drop in pHi, whereas the subsequent removal of Ac- from the bath caused a slight alkalinization. These pHi changes caused by readdition or removal of Ac- from baths were unaffected by the absence of external Na+. We conclude that there is a Na+/Ac- cotransporter at the luminal membrane, and pathways for acetic acid transport at both luminal and basolateral membranes. The net effect of Ac- transport on pHi is to alkalinize the cell as a result of the luminal entry of Na+/Ac-, which is followed by the luminal and basolateral exit of acetic acid.


Assuntos
Acetatos/metabolismo , Túbulos Renais Proximais/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Feminino , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Cinética , Perfusão , Fosfatos/metabolismo , Fosfatos/farmacologia , Coelhos , Sódio/metabolismo
10.
J Gen Physiol ; 99(5): 817-37, 1992 May.
Artigo em Inglês | MEDLINE | ID: mdl-1607854

RESUMO

Intracellular pH (pHi) in squid giant axons recovers from acid loads by means of a Na(+)-dependent Cl-HCO3 exchanger, the actual mechanism of which might be exchange of: (i) external Na+ and HCO3- for internal Cl- and H+, (ii) Na+ plus two HCO3- for Cl-, (iii) Na+ and CO3= for Cl-, or (iv) the NaCO3- ion pair for Cl-. Here we examine sensitivity of transport to changes of extracellular pH (pHo) in the range 7.1-8.6. We altered pHo in four ways, using: (i) classical "metabolic" disturbances in which we varied [HCO3-]o, [NaCO3-]o, and [CO3=]o at a fixed [CO2]o; (ii) classical "respiratory" disturbances in which we varied [CO2]o, [NaCO3-]o, and [CO3=]o at a fixed [HCO3-]o; (iii) novel mixed-type acid-base disturbances in which we varied [HCO3-]o and [CO2]o at a fixed [CO3=]o and [NaCO3-]o; and (iv) a second series of novel mixed-type disturbances in which we varied [CO2]o, [CO3=]o, and [Na+]o at a fixed [HCO3-]o and [NaCO3-]o. Axons (initial pHi approximately 7.4) were internally dialyzed with a pH 6.5 solution containing 400 mM Cl- but no Na+. After pHi, measured with a glass microelectrode, had fallen to approximately 6.6, dialysis was halted. The equivalent acid extrusion rate (JH) was computed from the rate of pHi recovery (i.e., increase) in the presence of Na+ and HCO3-. When pHo was varied by method (i), which produced the greatest range of [CO3=]o and [NaCO3-]o values, JH increased with pHo in a sigmoidal fashion; the relation was fitted by a pH titration curve with a pK of approximately 7.7 and a Hill coefficient of approximately 3.0. With method (ii), which produced smaller changes in [CO3=]o and [NaCO3-]o, JH also increased with pHo, though less steeply. With method (iii), which involved changes in neither [CO3=]o nor [NaCO3-]o, JH was insensitive to pHo changes. Finally, with method (iv), which involved changes in neither [HCO3-] nor [NaCO3-]o, but reciprocal changes in [CO3=]o and [Na+]o, JH also was insensitive to pHo changes. We found that decreasing pHo from 8.6 to 7.1 caused the apparent Km for external HCO3- ([Na+]o = 425 mM) to increase from 1.0 to 26.7 mM, whereas Jmax was relatively stable. Decreasing pHo from 8.6 to 7.4 caused the apparent Km values for external Na+ ([HCO3-]o = 48 mM) to increase from 8.6 to 81 mM, whereas Jmax was relatively stable.(ABSTRACT TRUNCATED AT 400 WORDS)


Assuntos
Axônios/metabolismo , Bicarbonatos/metabolismo , Cloretos/metabolismo , Equilíbrio Ácido-Base , Animais , Proteínas de Transporte/metabolismo , Antiportadores de Cloreto-Bicarbonato , Decapodiformes , Concentração de Íons de Hidrogênio , Troca Iônica , Cinética , Modelos Biológicos , Sódio/metabolismo , Sódio/farmacologia
11.
J Gen Physiol ; 90(6): 799-831, 1987 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-3440860

RESUMO

We used microelectrodes to examine the effects of organic substrates, particularly lactate (Lac-), on the intracellular pH (pHi) and basolateral membrane potential (Vbl) in isolated, perfused proximal tubules of the tiger salamander. Exposure of the luminal and basolateral membranes to 3.6 mM Lac- caused pHi to increase by approximately 0.2, opposite to the decrease expected from nonionic diffusion of lactic acid (HLac) into the cell. Addition of Lac- to only the lumen also caused alkalinization, but only if Na+ was present. This alkalinization was not accompanied by immediate Vbl changes, which suggests that it involves luminal, electroneutral Na/Lac cotransport. Addition of Lac- to only the basolateral solution caused pHi to decrease by approximately 0.08. The initial rate of this acidification was a saturable function of [Lac-], was not affected by removal of Na+, and was reversibly reduced by alpha-cyano-4-hydroxycinnamate (CHC). Thus, the pHi decrease induced by basolateral Lac- appears to be due to the basolateral entry of H+ and Lac-, mediated by an H/Lac cotransporter (or a Lac-base exchanger). Our data suggest that this transporter is electroneutral and is not present at the luminal membrane. A key question is how the addition of Lac- to the lumen increases pHi. We found that inhibition of basolateral H/Lac cotransport by basolateral CHC reduced the initial rate of pHi increase caused by luminal Lac-. On the other hand, luminal CHC had no effect on the luminal Lac(-)-induced alkalinization. These data suggest that when Lac- is present in the lumen, it enters the cell from the lumen via electroneutral Na/Lac cotransport and then exists with H+ across the basolateral membrane via electroneutral H/Lac cotransport. The net effect is transepithelial Lac- reabsorption, basolateral acid extrusion, and intracellular alkalinization.


Assuntos
Túbulos Renais Proximais/metabolismo , Lactatos/metabolismo , Ambystoma , Animais , Transporte Biológico , Ácidos Cumáricos/farmacologia , Eletrodos , Feminino , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Modelos Biológicos , Sódio/fisiologia
12.
J Gen Physiol ; 81(1): 29-52, 1983 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-6833996

RESUMO

Using pH-sensitive microelectrodes to measure intracellular pH (pHi) in isolated, perfused proximal tubules of the tiger salamander Ambystoma tigrinum, we have found that when cells are acid-loaded by pretreatment with NH+4 in a nominally HCO3--free Ringer, pHi spontaneously recovers with an exponential time course. This pHi recovery, which is indicative of active (i.e., uphill) transport, is blocked by removal of Na+ from both the luminal and basolateral (i.e., bath) solutions. Re-addition of Na+ to either the lumen or the bath results in a full pHi recovery, but at a lower-than-normal rate; the maximal rate is achieved only with Na+ in both solutions. The diuretic amiloride reversibly inhibits the pHi recovery when present on either the luminal or basolateral sides, and has its maximal effect when present in both solutions. The pHi recovery is insensitive to stilbene derivatives and to Cl- removal. A transient rise of intracellular Na+ activity accompanies the pHi recovery; there is no change of intracellular Cl- activity. These data suggest that these proximal tubule cells have Na-H exchangers in both the luminal and basolateral membranes.


Assuntos
Hidrogênio/metabolismo , Membranas Intracelulares/fisiologia , Túbulos Renais Proximais/fisiologia , Sódio/metabolismo , Urodelos/fisiologia , Amilorida/farmacologia , Animais , Cloretos/farmacologia , Feminino , Concentração de Íons de Hidrogênio , Membranas Intracelulares/metabolismo , Túbulos Renais Proximais/metabolismo , Compostos de Amônio Quaternário/farmacologia , Sódio/farmacologia , Estilbenos/farmacologia
13.
J Gen Physiol ; 81(1): 53-94, 1983 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-6833997

RESUMO

We have used pH-, Na-, and Cl-sensitive microelectrodes to study basolateral HCO3- transport in isolated, perfused proximal tubules of the tiger salamander Ambystoma tigrinum. In one series of experiments, we lowered basolateral pH (pHb) from 7.5 to 6.8 by reducing [HCO3-]b from 10 to 2 mM at a constant pCO2. This reduction of pHb and [HCO3-]b causes a large (approximately 0.35), rapid fall in pHi as well as a transient depolarization of the basolateral membrane. Returning pHb and [HCO3-]b to normal has the opposite effects. Similar reductions of luminal pH (pHl) and [HCO3-]l have only minor effects. The reduction of [HCO3-]b and pHb also produces a reversible fall in aiNa. In a second series of experiments, we reduced [Na+]b at constant [HCO3-]b and pHb, and also observed a rapid fall in pHi and a transient basolateral depolarization. These changes are reversed by returning [Na+]b to normal. The effects of altering [Na+]l in the presence of HCO3-, or of altering [Na+]b in the nominal absence of HCO3-, are substantially less. Although the effects on pHi and basolateral membrane potential of altering either [HCO3-]b or [Na+]b are largely blocked by 4-acetamido-4-isothiocyanostilbene-2,2'-disulfonate (SITS), they are not affected by removal of Cl-, nor are there accompanying changes in aiCl consistent with a tight linkage between Cl- fluxes and those of Na+ and HCO3-. The aforementioned changes are apparently mediated by a single transport system, not involving Cl-. We conclude that HCO3- transport is restricted to the basolateral membrane, and that HCO3- fluxes are linked to those of Na+. The data are compatible with an electrogenic Na/HCO3 transporter that carries Na+, HCO3-, and net negative charge in the same direction.


Assuntos
Bicarbonatos/metabolismo , Membranas Intracelulares/fisiologia , Túbulos Renais Proximais/fisiologia , Urodelos/fisiologia , Animais , Bicarbonatos/farmacologia , Transporte Biológico , Cloretos/farmacologia , Eletrofisiologia , Feminino , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Membranas Intracelulares/metabolismo , Túbulos Renais Proximais/metabolismo , Sódio/metabolismo
14.
J Gen Physiol ; 81(3): 373-99, 1983 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-6842177

RESUMO

The ion transport system responsible for intracellular pH (pHi) regulation in squid giant axons was examined in experiments with pH-sensitive microelectrodes and isotopic fluxes of Na+ and Cl-. In one study, axons were acid-loaded and the rate of the subsequent pHi recovery was used to calculate the acid extrusion rate. There was an absolute dependence of acid extrusion on external Na+, external HCO-3 (at constant pH), and internal Cl-. Furthermore, the dependence of the acid extrusion rate on each of these three parameters was described by Michaelis-Menten kinetics. Acid extrusion was stimulated by an acid pHi, required internal ATP, and was blocked by external 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate (SITS). Under a standard set of conditions (i.e., [HCO-3]o = 12 mM, pHo = 8.00, [Na+]o = 425 mM, [Cl-]i = 150 mM, [ATP]i = 4 mM, pHi = 6.5, and 16 degrees C), the mean acid extrusion rate was 7.5 pmol X cm-2 X s-1. In a second study under the above standard conditions, the unidirectional Na+ efflux (measured with 22Na) mediated by the pHi-regulating system was found to be approximately 0, whereas the mean influx was about 3.4 pmol X cm-2 X s-1. This net influx required external HCO-3, internal Cl-, and acid pHi, internal ATP, and was blocked by SITS. In the final series of experiments under the above standard conditions, the unidirectional Cl- influx (measured with 36Cl) mediated by the pHi-regulating system was found to be approximately 0, whereas the mean efflux was approximately 3.9 pmol X cm-2 X s-1. This net efflux required external HCO-3, external Na+, an acid pHi, internal ATP, and was blocked by SITS. We conclude that the pHi-regulating system mediates the obligate net influx of HCO-3 (or equivalent species) and Na+ and the net efflux of Cl- in the stoichiometry of 2:1:1. The transport system is stimulated by intracellular acid loads, requires ATP, and is blocked by SITS.


Assuntos
Concentração de Íons de Hidrogênio , Membranas Intracelulares/fisiologia , Íons/fisiologia , Ácidos/metabolismo , Animais , Bicarbonatos/fisiologia , Fenômenos Biomecânicos , Fenômenos Químicos , Química , Cloretos/fisiologia , Decapodiformes , Matemática , Potenciais da Membrana , Modelos Biológicos , Sódio/fisiologia
15.
J Gen Physiol ; 67(1): 91-112, 1976 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-1460

RESUMO

The intracellular pH (pHi) of squid giant axons has been measured using glass pH microelectrodes. Resting pHi in artificial seawater (ASW) (pH 7.6-7.8) at 23 degrees C was 7.32 +/- 0.02 (7.28 if corrected for liquid junction potential). Exposure of the axon to 5% CO2 at constant external pH caused a sharp decrease in pHi, while the subsequent removal of the gas caused pHi to overshoot its initial value. If the exposure to CO2 was prolonged, two additional effects were noted: (a) during the exposure, the rapid initial fall in pHi was followed by a slow rise, and (b) after the exposure, the overshoot was greatly exaggerated. Application of external NH4Cl caused pHi to rise sharply; return to normal ASW caused pHi to return to a value below its initial one. If the exposure to NH4Cl was prolonged, two additional effects were noted: (a) during the exposure, the rapid initial rise in pHi was followed by a slow fall, and (b) after the exposure, the undershoot was greatly exaggerated. Exposure to several weak acid metabolic inhibitors caused a fall in pHi whose reversibility depended upon length of exposure. Inverting the electrochemical gradient for H+ with 100 mM K-ASW had no effect on pHi changes resulting from short-term exposure to azide. A mathematical model explains the pHi changes caused by NH4Cl on the basis of passive movements of both NH3 and NH4+. The simultaneous passive movements of CO2 and HCO3-cannot explain the results of the CO2 experiments; these data require the postulation of an active proton extrusion and/or sequestration mechanism.


Assuntos
Cloreto de Amônio/farmacologia , Antimetabólitos/farmacologia , Axônios/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Concentração de Íons de Hidrogênio , Animais , Azidas/farmacologia , Cianetos/farmacologia , Decapodiformes , Dinitrofenóis/farmacologia , Modelos Biológicos
16.
J Gen Physiol ; 93(1): 123-50, 1989 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-2915212

RESUMO

Intracellular pH (pHi) of the squid axon is regulated by a stilbenesensitive transporter that couples the influx of Na+ and HCO3- (or the equivalent) to the efflux of Cl-. According to one model, the extracellular ion pair NaCO3- exchanges for intracellular Cl-. In the present study, the ion-pair model was tested by examining the interaction of the reversible stilbene derivative 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS) with extracellular Na+ and HCO3-. Axons (initial pHi approximately 7.4) were internally dialyzed with a pH 6.5 solution containing 400 mM Cl- but no Na+. After pHi, as measured with a glass microelectrode, had fallen to approximately 6.6, dialysis was halted. In the presence of both external Na+ and HCO3- (pHo = 8.0, 22 degrees C), pHi increased due to the pHi-regulating mechanism. At a fixed [Na+]o of 425 mM and [HCO3-]o of 12 mM, DNDS reversibly reduced the equivalent acid-extrusion rate (JH) calculated from the rate of pHi recovery. The best-fit value for maximal inhibition was 104%, and for the [DNDS]o at half-maximal inhibition, 0.3 mM. At a [Na+]o of 425 mM, the [HCO3-]o dependence of JH was examined at 0, 0.1, and 0.25 mM DNDS. Although Jmax was always approximately 20 pmol cm-2 s-1, Km(HCO3-) was 2.6, 5.7, and 12.7 mM, respectively. Thus, DNDS is competitive with HCO3-. At a [HCO3-]o of 12 mM, the [Na+]o dependence of JH was examined at 0 and 0.1 mM DNDS. Although Jmax was approximately 20 pmol cm-2 s-1 in both cases, Km(Na+) was 71 and 179 mM, respectively. At a [HCO3-]o of 48 mM, Jmax was approximately 20 pmol cm-2 s-1 at [DNDS]o levels of 0, 0.1, and 0.25 mM. However, Km(Na+) was 22, 45, and 90 mM, respectively. Thus, DNDS (an anion) is also competitive with Na+. The results are consistent with simple competition between DNDS and NaCO3-, and place severe restrictions on other kinetic models.


Assuntos
Axônios/metabolismo , Bicarbonatos/metabolismo , Sódio/metabolismo , Estilbenos/farmacologia , Animais , Axônios/efeitos dos fármacos , Decapodiformes , Concentração de Íons de Hidrogênio , Técnicas In Vitro
17.
J Gen Physiol ; 86(6): 765-94, 1985 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-4078557

RESUMO

We evaluated the dye 4',5'-dimethyl-5-(and -6-) carboxyfluorescein (Me2CF) for determining the intracellular pH(pHi) of isolated, perfused proximal tubules of the salamander. The intracellular absorbance spectrum, corrected for the intrinsic absorbance of the tubule, was obtained once per second. The dye was incorporated into tubule cells by exposing them to the membrane-permeable precursor 4',5'-dimethyl-5- (and -6-) carboxyfluorescein diacetate. The introduction of the dye had no significant effect on either pHi or cell voltage transients. Compared with dye contained in a cuvette, intracellular dye had a peak absorbance that was red-shifted by approximately 5 nm, and an apparent pK that was increased by approximately 0.3. These differences precluded an accurate calculation of pHi by the comparison of intracellular spectra with in vitro calibration spectra. However, when Me2CF was calibrated intracellularly, using the K-H exchanger nigericin to equalize external pH and pHi, the dye-derived, steady state pHi was within approximately 0.1 of the value obtained with pH-sensitive microelectrodes. Furthermore, when pHi was simultaneously measured with dye and microelectrodes during rapid pHi transients, the pHi time courses measured by the two methods were very similar. We conclude that the intracellular absorbance spectrum of Me2CF can be used to measure steady state pHi and rapid pHi transients reliably, provided the dye is calibrated intracellularly.


Assuntos
Ambystoma/metabolismo , Fluoresceínas , Túbulos Renais Proximais/metabolismo , Animais , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Líquido Intracelular/metabolismo , Microeletrodos , Nigericina , Perfusão , Espectrofotometria
18.
J Gen Physiol ; 110(4): 467-83, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9379176

RESUMO

In the preceding paper (Bevensee, M.O., R.A. Weed, and W.F. Boron. 1997. 110: 453-465.), we showed that a Na-driven influx of HCO causes the increase in intracellular pH (pH) observed when astrocytes cultured from rat hippocampus are exposed to 5% CO/17 mM HCO. In the present study, we used the pH-sensitive fluorescent indicator 2',7'-biscarboxyethyl-5,6-carboxyfluorescein (BCECF) and the perforated patch-clamp technique to determine whether this transporter is a Na-driven Cl-HCO exchanger, an electrogenic Na/HCO cotransporter, or an electroneutral Na/HCO cotransporter. To determine if the transporter is a Na-driven Cl-HCO exchanger, we depleted the cells of intracellular Cl by incubating them in a Cl-free solution for an average of approximately 11 min. We verified the depletion with the Cl-sensitive dye -(6-methoxyquinolyl)acetoethyl ester (MQAE). In Cl-depleted cells, the pH still increases after one or more exposures to CO/HCO. Furthermore, the pH decrease elicited by external Na removal does not require external Cl. Therefore, the transporter cannot be a Na-driven Cl-HCO exchanger. To determine if the transporter is an electrogenic Na/ HCO cotransporter, we measured pH and plasma membrane voltage (V) while removing external Na, in the presence/absence of CO/HCO and in the presence/absence of 400 microM 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS). The CO/HCO solutions contained 20% CO and 68 mM HCO, pH 7.3, to maximize the HCO flux. In pH experiments, removing external Na in the presence of CO/HCO elicited an equivalent HCO efflux of 281 microM s. The HCO influx elicited by returning external Na was inhibited 63% by DIDS, so that the predicted DIDS-sensitive V change was 3.3 mV. Indeed, we found that removing external Na elicited a DIDS-sensitive depolarization that was 2.6 mV larger in the presence than in the absence of CO/ HCO. Thus, the Na/HCO cotransporter is electrogenic. Because a cotransporter with a Na:HCO stoichiometry of 1:3 or higher would predict a net HCO efflux, rather than the required influx, we conclude that rat hippocampal astrocytes have an electrogenic Na/HCO cotransporter with a stoichiometry of 1:2.


Assuntos
Astrócitos/metabolismo , Bicarbonatos/metabolismo , Proteínas de Transporte/metabolismo , Hipocampo/metabolismo , Animais , Soluções Tampão , Separação Celular , Células Cultivadas , Cloretos/metabolismo , Estimulação Elétrica , Eletrofisiologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Hipocampo/citologia , Concentração de Íons de Hidrogênio , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Ratos , Simportadores de Sódio-Bicarbonato
19.
J Gen Physiol ; 105(2): 177-208, 1995 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-7760016

RESUMO

Osteoclasts resorb bone by pumping of H+ into a compartment between the cell and the bone surface. Intracellular pH (pHi) homeostasis requires that this acid extrusion, mediated by a vacuolar-type H+ ATPase, be complemented by other acid-base transporters. We investigated acid-extrusion mechanisms of single, freshly isolated, neonatal rat osteoclasts. Cells adherent to glass coverslips were studied in the nominal absence of CO2/HCO3-, using the pH-sensitive dye BCECF and a digital imaging system. Initial pHi averaged 7.31 and was uniform throughout individual cells. Intrinsic buffering power (beta 1) decreased curvilinearly from approximately 25 mM at pHi = 6.4 to approximately 6.0 mM at pHi = 7.4. In all polygonally shaped osteoclasts, and approximately 60% of round osteoclasts (approximately 20% of total), pHi recovery from acid loads was mediated exclusively by Na-H exchange. In these pattern-1 cells, pHi recovery was 95% complete within 200 s, and was blocked by removing Na+, or by applying 1 mM amiloride, 50 microM ethylisopropylamiloride (EIPA), or 50 microM hexamethyleneamiloride (HMA). The apparent K1/2 for HMA ([Na+]o = 150 mM) was 49 nM, and the apparent K1/2 for Na+ was 45 mM. Na-H exchange, corrected for amiloride-insensitive fluxes, was half maximal at pHi 6.73, with an apparent Hill coefficient for intracellular H+ of 2.9. Maximal Na-H exchange averaged 741 microM/s. In the remaining approximately 40% of round osteoclasts (pattern-2 cells), pHi recovery from acid loads was brisk even in the absence of Na+ or presence of amiloride. This Na(+)-independent pHi recovery was blocked by 7-chloro-4-nitrobenz-2-oxa-1,3-diazol (NBD-Cl), a vacuolar-type H+ pump inhibitor. Corrected for NBD-Cl insensitive fluxes, H+ pump fluxes decreased approximately linearly from 96 at pHi 6.8 to 11 microM/s at pHi 7.45. In approximately 45% of pattern-2 cells, Na+ readdition elicited a further pHi recovery, suggesting that H+ pumps and Na-H exchangers can exist simultaneously. We conclude that, under the conditions of our study, most neonatal rat osteoclasts express Na-H exchangers that are probably of the ubiquitous basolateral subtype. Some cells express vacuolar-type H+ pumps in their plasma membrane, as do active osteoclasts in situ.


Assuntos
Osteoclastos/fisiologia , Bombas de Próton/fisiologia , Trocadores de Sódio-Hidrogênio/fisiologia , Vacúolos/ultraestrutura , 4-Cloro-7-nitrobenzofurazano/farmacologia , Equilíbrio Ácido-Base/fisiologia , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Animais Recém-Nascidos/fisiologia , Soluções Tampão , Membrana Celular/ultraestrutura , Fluoresceínas , Concentração de Íons de Hidrogênio , Osteoclastos/ultraestrutura , Compostos de Amônio Quaternário/efeitos adversos , Ratos , Ratos Wistar , Sódio/deficiência , Sódio/metabolismo
20.
J Gen Physiol ; 106(5): 821-44, 1995 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8648294

RESUMO

We used microelectrodes to monitor the recovery (i.e., decrease) of intracellular pH (pHi) after using internal dialysis to load squid giant axons with alkali to pHi values of 7.7, 8.0, or 8.3. The dialysis fluid (DF) contained 400 mM K+ but was free of Na+ and Cl-. The artificial seawater (ASW) lacked Na+, K+, and Cl-, thereby eliminating effects of known acid-base transporters on pHi. Under these conditions, halting dialysis unmasked a slow pHi decrease caused at least in part by acid-base transport we refer to as "base efflux." Replacing K+ in the DF with either NMDG+ or TEA+ significantly reduced base efflux and made membrane voltage (Vm) more positive. Base efflux in K(+)-dialyzed axons was stimulated by decreasing the pH of the ASW (pHo) from 8 to 7, implicating transport of acid or base. Although postdialysis acidifications also occurred in axons in which we replaced the K+ in the DF with Li+, Na+, Rb+, or Cs+, only with Rb+ was base efflux stimulated by low pHo. Thus, the base effluxes supported by K+ and Rb+ appear to be unrelated mechanistically to those observed with Li+, Na+, or Cs+. The combination of 437 mM K+ and 12 mM HCO3- in the ASW, which eliminates the gradient favoring a hypothetical K+/HCO3- efflux, blocked pHi recovery in K(+)-dialyzed axons. However, the pHi recovery was not blocked by the combination of 437 mM Na+, veratridine, and CO2/HCO3- in the ASW, a treatment that inverts electrochemical gradients for H+ and HCO3- and would favor passive H+ and HCO3- fluxes that would have alkalinized the axon. Similarly, the recovery was not blocked by K+ alone or HCO3- alone in the ASW, nor was it inhibited by the K-H pump blocker Sch28080 nor by the Na-H exchange inhibitors amiloride and hexamethyleneamiloride. Our data suggest that a major component of base efflux in alkali-loaded axons cannot be explained by metabolism, a H+ or HCO3- conductance, or by a K-H exchanger. However, this component could be mediated by a novel K/HCO3- cotransporter.


Assuntos
Álcalis/metabolismo , Axônios/metabolismo , Bicarbonatos/metabolismo , Proteínas de Transporte/fisiologia , Potássio/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-dissulfônico/farmacologia , Equilíbrio Ácido-Base , Ácidos/metabolismo , Animais , Bicarbonatos/farmacologia , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Soluções Tampão , Dióxido de Carbono/fisiologia , Proteínas de Transporte/farmacologia , Cátions/metabolismo , Cloretos/metabolismo , Decapodiformes , Espaço Extracelular/metabolismo , Potássio/farmacologia , Sódio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA