Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nature ; 588(7836): E1, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33188369

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Proc Biol Sci ; 291(2024): 20232847, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864338

RESUMO

Gene loss is an important mechanism for evolution in low-light or cave environments where visual adaptations often involve a reduction or loss of eyesight. The plaat gene family encodes phospholipases essential for the degradation of organelles in the lens of the eye. These phospholipases translocate to damaged organelle membranes, inducing them to rupture. This rupture is required for lens transparency and is essential for developing a functioning eye. Plaat3 is thought to be responsible for this role in mammals, while plaat1 is thought to be responsible in other vertebrates. We used a macroevolutionary approach and comparative genomics to examine the origin, loss, synteny and selection of plaat1 across bony fishes and tetrapods. We showed that plaat1 (probably ancestral to all bony fish + tetrapods) has been lost in squamates and is significantly degraded in lineages of low-visual-acuity and blind mammals and fishes. Our findings suggest that plaat1 is important for visual acuity across bony vertebrates, and that its loss through relaxed selection and pseudogenization may have played a role in the repeated evolution of visual systems in low-light environments. Our study sheds light on the importance of gene-loss in trait evolution and provides insights into the mechanisms underlying visual acuity in low-light environments.


Assuntos
Vertebrados , Animais , Vertebrados/genética , Vertebrados/fisiologia , Seleção Genética , Deleção de Genes , Peixes/genética , Peixes/fisiologia , Filogenia , Evolução Biológica , Luz , Evolução Molecular
3.
Nature ; 555(7698): 647-651, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29562229

RESUMO

Periodic food shortages are a major challenge faced by organisms in natural habitats. Cave-dwelling animals must withstand long periods of nutrient deprivation, as-in the absence of photosynthesis-caves depend on external energy sources such as seasonal floods. Here we show that cave-adapted populations of the Mexican tetra, Astyanax mexicanus, have dysregulated blood glucose homeostasis and are insulin-resistant compared to river-adapted populations. We found that multiple cave populations carry a mutation in the insulin receptor that leads to decreased insulin binding in vitro and contributes to hyperglycaemia. Hybrid fish from surface-cave crosses carrying this mutation weigh more than non-carriers, and zebrafish genetically engineered to carry the mutation have increased body weight and insulin resistance. Higher body weight may be advantageous in caves as a strategy to cope with an infrequent food supply. In humans, the identical mutation in the insulin receptor leads to a severe form of insulin resistance and reduced lifespan. However, cavefish have a similar lifespan to surface fish and do not accumulate the advanced glycation end-products in the blood that are typically associated with the progression of diabetes-associated pathologies. Our findings suggest that diminished insulin signalling is beneficial in a nutrient-limited environment and that cavefish may have acquired compensatory mechanisms that enable them to circumvent the typical negative effects associated with failure to regulate blood glucose levels.


Assuntos
Aclimatação/fisiologia , Ecossistema , Comportamento Alimentar , Peixes/fisiologia , Resistência à Insulina , Inanição , Envelhecimento/sangue , Envelhecimento/fisiologia , Animais , Glicemia/metabolismo , Peso Corporal/genética , Cavernas , Feminino , Peixes/sangue , Produtos Finais de Glicação Avançada/sangue , Homeostase , Insulina/metabolismo , Masculino , Mutação , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
4.
Am Nat ; 202(1): 55-63, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37384766

RESUMO

AbstractGenetic divergence in the presence of gene flow has been well documented, but there is little information on the specific factors maintaining divergence. The present study investigates this in the Mexican tetra (Astyanax mexicanus), an excellent model for studying this question because surface and cave populations differ markedly in phenotype and genotype but are interfertile. Previous population studies documented significant gene flow among cave and surface populations, but they focused on analyses of neutral markers whose evolutionary dynamics likely differ from those of genes involved in cave adaptation. The present study advances our understanding of this question by focusing specifically on the genetics responsible for eye and pigmentation reduction, signature traits of cave populations. Direct observations of two cave populations over the course of 63 years verify that surface fish frequently move into the caves and even hybridize with the cave fish. Importantly, however, historical records show that surface alleles for pigmentation and eye size do not persist but are rapidly eliminated from the cave gene pool. It has been argued that regression of eyes and pigmentation was driven by drift, but the results of this study suggest that strong selection actively eliminates surface alleles from the cave populations.


Assuntos
Cavernas , Peixes , Animais , Peixes/genética , Fenótipo , Genótipo , Pigmentação/genética
5.
Dev Biol ; 441(2): 338-344, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29704470

RESUMO

Little is known about the genetic basis of behavioral choice, such as temperature preference, especially in natural populations. Thermal preference can play a key role in habitat selection, for example in aquatic species. Examining this behavior on a genetic level requires access to individuals or populations of the same species that display distinct temperature preferences. Caves provide a uniquely advantageous setting to tackle this problem, as animals colonizing caves encounter an environment that generally has a different, and far more stable, annual temperature than what is encountered on the outside. Here, we focus on cave and surface populations of Astyanax mexicanus, the Mexican tetra, and examine temperature preference and strength of temperature preference (reflected in the percent of time spent at the optimal temperature). We used a tank with a stable temperature gradient and automated tracking software to follow individual fish from each population. We found that distinct populations of A. mexicanus display differences in both temperature preference and strength of preference. Hybrid crosses established that these are multigenic traits that segregate independently from one another. Temperature preference in many aquatic animals is known to shift towards warmer temperatures following infection with parasites (akin to a fever response in humans). While surface fish infected by the ectoparasite Gyrodactylus turnbulli (a gill fluke) displayed a strong fever response, cavefish showed a significantly attenuated fever response. This work establishes A. mexicanus as a genetically tractable system in which differences in temperature preference can be studied in naturally evolved populations.


Assuntos
Caraciformes/fisiologia , Cruzamentos Genéticos , Ecossistema , Característica Quantitativa Herdável , Temperatura , Animais
7.
BMC Biol ; 16(1): 72, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29973198

RESUMO

BACKGROUND: The phenotypes of sperm are generally believed to be under the control of the diploid genotype of the male producing them rather than their own haploid genotypes, because developing spermatids share cytoplasm through intercellular bridges. This sharing is believed to homogenize their content of gene products. However, not all developing spermatids have identical gene products and estimates are that alleles at numerous gene loci are unequally expressed in sperm. This provides scope for the hypothesis that sperm phenotypes might be influenced by their unique haplotypes. Here we test a key prediction of this hypothesis. RESULTS: The haploid hypothesis predicts that phenotypically different sperm subpopulations should be genetically distinct. We tested this by genotyping different sperm subpopulations that were generated by exposing sperm to a chemical dye challenge (Hoechst 33342). Dye treatment caused the cells to swell and tend to clump together. The three subpopulations of sperm we distinguished in flow cytometry corresponded to single cells, and clumps of two or three. Cell clumping in the presence of the dye may reflect variation in cell adhesivity. We found that allelic contents differed among the three populations. Importantly, the subpopulations with clumped sperm cells were significantly enriched in allelic combinations that had previously been observed to have significantly lower transmission success. CONCLUSIONS: We show that at least one sperm phenotype is correlated with its haploid genotype. This supports a broader hypothesis that the haploid genotypes of sperm cells may influence their fitness, with potentially significant implications for the transmission of deleterious alleles or combinations of alleles to their offspring.


Assuntos
Characidae/genética , Characidae/fisiologia , Haplótipos , Espermatogênese/genética , Espermatozoides/crescimento & desenvolvimento , Alelos , Animais , Masculino , Fenótipo , Espermatozoides/citologia
8.
Mol Ecol ; 27(22): 4397-4416, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30252986

RESUMO

Understanding the molecular basis of repeatedly evolved phenotypes can yield key insights into the evolutionary process. Quantifying gene flow between populations is especially important in interpreting mechanisms of repeated phenotypic evolution, and genomic analyses have revealed that admixture occurs more frequently between diverging lineages than previously thought. In this study, we resequenced 47 whole genomes of the Mexican tetra from three cave populations, two surface populations and outgroup samples. We confirmed that cave populations are polyphyletic and two Astyanax mexicanus lineages are present in our data set. The two lineages likely diverged much more recently than previous mitochondrial estimates of 5-7 mya. Divergence of cave populations from their phylogenetically closest surface population likely occurred between ~161 and 191 k generations ago. The favoured demographic model for most population pairs accounts for divergence with secondary contact and heterogeneous gene flow across the genome, and we rigorously identified gene flow among all lineages sampled. Therefore, the evolution of cave-related traits occurred more rapidly than previously thought, and trogolomorphic traits are maintained despite gene flow with surface populations. The recency of these estimated divergence events suggests that selection may drive the evolution of cave-derived traits, as opposed to disuse and drift. Finally, we show that a key trogolomorphic phenotype QTL is enriched for genomic regions with low divergence between caves, suggesting that regions important for cave phenotypes may be transferred between caves via gene flow. Our study shows that gene flow must be considered in studies of independent, repeated trait evolution.


Assuntos
Evolução Biológica , Cavernas , Characidae/genética , Fluxo Gênico , Genética Populacional , Animais , México , Modelos Genéticos , Fenótipo , Filogenia , Locos de Características Quantitativas
9.
Proc Natl Acad Sci U S A ; 112(31): 9668-73, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26170297

RESUMO

Despite recent advances in the understanding of morphological evolution, the genetic underpinnings of behavioral and physiological evolution remain largely unknown. Here, we study the metabolic changes that evolved in independently derived populations of the Mexican cavefish, Astyanax mexicanus. A hallmark of cave environments is scarcity of food. Cavefish populations rely almost entirely on sporadic food input from outside of the caves. To survive under these conditions, cavefish have evolved a range of adaptations, including starvation resistance and binge eating when food becomes available. The use of these adaptive strategies differs among independently derived cave populations. Although all cavefish populations tested lose weight more slowly than their surface conspecifics during restricted rations, only a subset of cavefish populations consume more food than their surface counterparts. A candidate gene-based screen led to the identification of coding mutations in conserved residues of the melanocortin 4 receptor (MC4R) gene, contributing to the insatiable appetite found in some populations of cavefish. Intriguingly, one of the mutated residues has been shown to be linked to obesity in humans. We demonstrate that the allele results in both reduced maximal response and reduced basal activity of the receptor in vitro. We further validate in vivo that the mutated allele contributes to elevated appetite, growth, and starvation resistance. The allele appears to be fixed in cave populations in which the overeating phenotype is present. The presence of the same allele in multiple caves appears to be due to selection from standing genetic variation present in surface populations.


Assuntos
Adaptação Fisiológica/genética , Cavernas , Characidae/genética , Alimentos , Mutação/genética , Receptor Tipo 4 de Melanocortina/genética , Envelhecimento/metabolismo , Sequência de Aminoácidos , Animais , Apetite , Sequência Conservada , Hiperfagia/fisiopatologia , Fígado/metabolismo , Masculino , Dados de Sequência Molecular , Receptor Tipo 4 de Melanocortina/química
10.
Proc Natl Acad Sci U S A ; 110(42): 16933-8, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24085851

RESUMO

When an organism colonizes a new environment, it needs to adapt both morphologically and behaviorally to survive and thrive. Although recent progress has been made in understanding the genetic architecture underlying morphological evolution, behavioral evolution is poorly understood. Here, we use the Mexican cavefish, Astyanax mexicanus, to study the genetic basis for convergent evolution of feeding posture. When river-dwelling surface fish became entrapped in the caves, they were confronted with dramatic changes in the availability and type of food source and in their ability to perceive it. In this setting, multiple independent populations of cavefish exhibit an altered feeding posture compared with their ancestral surface forms. We determined that this behavioral change in feeding posture is not due to changes in cranial facial morphology, body depth, or to take advantage of the expansion in the number of taste buds. Quantitative genetic analysis demonstrates that two different cave populations have evolved similar feeding postures through a small number of genetic changes, some of which appear to be distinct. This work indicates that independently evolved populations of cavefish can evolve the same behavioral traits to adapt to similar environmental challenges by modifying different sets of genes.


Assuntos
Comportamento Animal/fisiologia , Cavernas , Characidae/fisiologia , Evolução Molecular , Comportamento Alimentar/fisiologia , Loci Gênicos/fisiologia , Animais
11.
BMC Biol ; 13: 15, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25761998

RESUMO

BACKGROUND: Sleep is characterized by extended periods of quiescence and reduced responsiveness to sensory stimuli. Animals ranging from insects to mammals adapt to environments with limited food by suppressing sleep and enhancing their response to food cues, yet little is known about the genetic and evolutionary relationship between these processes. The blind Mexican cavefish, Astyanax mexicanus is a powerful model for elucidating the genetic mechanisms underlying behavioral evolution. A. mexicanus comprises an extant ancestral-type surface dwelling morph and at least five independently evolved cave populations. Evolutionary convergence on sleep loss and vibration attraction behavior, which is involved in prey seeking, have been documented in cavefish raising the possibility that enhanced sensory responsiveness underlies changes in sleep. RESULTS: We established a system to study sleep and vibration attraction behavior in adult A. mexicanus and used high coverage quantitative trait loci (QTL) mapping to investigate the functional and evolutionary relationship between these traits. Analysis of surface-cave F2 hybrid fish and an outbred cave population indicates that independent genetic factors underlie changes in sleep/locomotor activity and vibration attraction behavior. High-coverage QTL mapping with genotyping-by-sequencing technology identify two novel QTL intervals that associate with locomotor activity and include the narcolepsy-associated tp53 regulating kinase. These QTLs represent the first genomic localization of locomotor activity in cavefish and are distinct from two QTLs previously identified as associating with vibration attraction behavior. CONCLUSIONS: Taken together, these results localize genomic regions underlying sleep/locomotor and sensory changes in cavefish populations and provide evidence that sleep loss evolved independently from enhanced sensory responsiveness.


Assuntos
Cavernas , Characidae/genética , Comportamento Predatório/fisiologia , Privação do Sono/genética , Animais , Evolução Biológica , Cruzamentos Genéticos , Feminino , Hibridização Genética , Locomoção , Masculino , México , Locos de Características Quantitativas/genética , Sono , Vibração
12.
Nat Genet ; 38(1): 107-11, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16341223

RESUMO

The genetic basis of vertebrate morphological evolution has traditionally been very difficult to examine in naturally occurring populations. Here we describe the generation of a genome-wide linkage map to allow quantitative trait analysis of evolutionarily derived morphologies in the Mexican cave tetra, a species that has, in a series of independent caves, repeatedly evolved specialized characteristics adapted to a unique and well-studied ecological environment. We focused on the trait of albinism and discovered that it is linked to Oca2, a known pigmentation gene, in two cave populations. We found different deletions in Oca2 in each population and, using a cell-based assay, showed that both cause loss of function of the corresponding protein, OCA2. Thus, the two cave populations evolved albinism independently, through similar mutational events.


Assuntos
Albinismo/genética , Evolução Molecular , Peixes/genética , Pigmentação/genética , Animais , Linhagem Celular , Cruzamentos Genéticos , Éxons , Feminino , Proteínas de Peixes/genética , Peixes/fisiologia , Genética Populacional , Desequilíbrio de Ligação , Masculino , Melanócitos/citologia , Melanócitos/fisiologia , Camundongos , Dados de Sequência Molecular , Polimorfismo Genético , Locos de Características Quantitativas
13.
Mol Biol Evol ; 30(11): 2383-400, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23927992

RESUMO

Distinct populations of Astyanax mexicanus cavefish offer striking examples of repeatable convergence or parallelism in their independent evolutions from surface to cave phenotypes. However, the extent to which the repeatability of evolution occurred at the genetic level remains poorly understood. To address this, we first characterized the genetic diversity of 518 single-nucleotide polymorphisms (SNPs), obtained through RAD tag sequencing and distributed throughout the genome, in seven cave and three groups of surface populations. The cave populations represented two distinct lineages (old and new). Thirty-one SNPs were significantly differentiated between surface and old cave populations, two SNPs were differentiated between surface and new cave populations, and 44 SNPs were significantly differentiated in both old and new cave populations. In addition, we determined whether these SNPs map to the same locations of previously described quantitative trait loci (QTL) between surface and cave populations. A total of 25 differentiated SNPs co-map with several QTL, such as one containing a fibroblast growth factor gene (Fgf8) involved in eye development and lens size. Further, the identity of many SNPs that co-mapped with QTL was the same in independently derived cave populations. These conclusions were further confirmed by haplotype analyses of SNPs within QTL regions. Our findings indicate that the repeatability of evolution at the genetic level is substantial, suggesting that ancestral standing genetic variation significantly contributed to the population genetic variability used in adaptation to the cave environment.


Assuntos
Cipriniformes/genética , Evolução Molecular , Metagenômica/métodos , Polimorfismo de Nucleotídeo Único , Adaptação Biológica , Animais , Evolução Biológica , Cavernas , Cipriniformes/classificação , Variação Genética , Genoma , Guatemala , Haplótipos , México , Fenótipo , Filogenia , Locos de Características Quantitativas
14.
BMC Biol ; 11: 81, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23844714

RESUMO

The forces driving the evolutionary loss or simplification of traits such as vision and pigmentation in cave animals are still debated. Three alternative hypotheses are direct selection against the trait, genetic drift, and indirect selection due to antagonistic pleiotropy. Recent work establishes that Astyanax cavefish exhibit vibration attraction behavior (VAB), a presumed behavioral adaptation to finding food in the dark not exhibited by surface fish. Genetic analysis revealed two regions in the genome with quantitative trait loci (QTL) for both VAB and eye size. These observations were interpreted as genetic evidence that selection for VAB indirectly drove eye regression through antagonistic pleiotropy and, further, that this is a general mechanism to account for regressive evolution. These conclusions are unsupported by the data; the analysis fails to establish pleiotropy and ignores the numerous other QTL that map to, and potentially interact, in the same regions. It is likely that all three forces drive evolutionary change. We will be able to distinguish among them in individual cases only when we have identified the causative alleles and characterized their effects.


Assuntos
Adaptação Fisiológica , Comportamento Animal/fisiologia , Evolução Biológica , Cegueira/fisiopatologia , Olho/fisiopatologia , Peixes/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Feminino , Masculino
15.
bioRxiv ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168154

RESUMO

Gene loss is an important mechanism for evolution in low-light or cave environments where visual adaptations often involve a reduction or loss of eyesight. The plaat gene family are phospholipases essential for the degradation of organelles in the lens of the eye. They translocate to damaged organelle membranes, inducing them to rupture. This rupture is required for lens transparency and is essential for developing a functioning eye. Plaat3 is thought to be responsible for this role in mammals, while plaat1 is thought to be responsible in other vertebrates. We used a macroevolutionary approach and comparative genomics to examine the origin, loss, synteny, and selection of plaat1 across bony fishes and tetrapods. We show that plaat1 (likely ancestral to all bony fish + tetrapods) has been lost in squamates and is significantly degraded in lineages of low-visual acuity and blind mammals and fish. Our findings suggest that plaat1 is important for visual acuity across bony vertebrates, and that its loss through relaxed selection and pseudogenization may have played a role in the repeated evolution of visual systems in low-light-environments. Our study sheds light on the importance of gene-loss in trait evolution and provides insights into the mechanisms underlying visual acuity in low-light environments.

16.
BMC Evol Biol ; 12: 9, 2012 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-22269119

RESUMO

BACKGROUND: Cave animals converge evolutionarily on a suite of troglomorphic traits, the best known of which are eyelessness and depigmentation. We studied 11 cave and 10 surface populations of Astyanax mexicanus in order to better understand the evolutionary origins of the cave forms, the basic genetic structuring of both cave and surface populations, and the degree to which present day migration among them affects their genetic divergence. RESULTS: To assess the genetic structure within populations and the relationships among them we genotyped individuals at 26 microsatellite loci. We found that surface populations are similar to one another, despite their relatively large geographic separation, whereas the cave populations are better differentiated. The cave populations we studied span the full range of the cave forms in three separate geographic regions and have at least five separate evolutionary origins. Cave populations had lower genetic diversity than surface populations, correlated with their smaller effective population sizes, probably the result of food and space limitations. Some of the cave populations receive migrants from the surface and exchange migrants with one another, especially when geographically close. This admixture results in significant heterozygote deficiencies at numerous loci due to Wahlund effects. Cave populations receiving migrants from the surface contain small numbers of individuals that are intermediate in both phenotype and genotype, affirming at least limited gene flow from the surface. CONCLUSIONS: Cave populations of this species are derived from two different surface stocks denoted "old" and "new." The old stock colonized caves at least three times independently while the new stock colonized caves at least twice independently. Thus, the similar cave phenotypes found in these caves are the result of repeated convergences. These phenotypic convergences have occurred in spite of gene flow from surface populations suggesting either strong natural or sexual selection for alleles responsible for the cave phenotype in the cave environment.


Assuntos
Cavernas , Cipriniformes/genética , Variação Genética , Migração Animal , Animais , Evolução Biológica , Cipriniformes/fisiologia , Olho/metabolismo , Fluxo Gênico , Frequência do Gene , Genética Populacional , Repetições de Microssatélites , Pigmentação , Densidade Demográfica
17.
Brain Behav Evol ; 80(4): 233-43, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22922609

RESUMO

Sleep is a fundamental behavior exhibited almost universally throughout the animal kingdom. The required amount and circadian timing of sleep differs greatly between species in accordance with habitats and evolutionary history. The Mexican blind cavefish, Astyanax mexicanus, is a model organism for the study of adaptive morphological and behavioral traits. In addition to loss of eyes and pigmentation, cave populations of A. mexicanus exhibit evolutionarily derived sleep loss and increased vibration attraction behavior, presumably to cope with a nutrient-poor environment. Understanding the neural mechanisms of evolutionarily derived sleep loss in this system may reveal critical insights into the regulation of sleep in vertebrates. Here we report that blockade of ß-adrenergic receptors with propranolol rescues the decreased-sleep phenotype of cavefish. This effect was not seen with α-adrenergic antagonists. Treatment with selective ß1-, ß2-, and ß3-antagonists revealed that the increased sleep observed with propranolol could partially be explained via the ß1-adrenergic system. Morphological analysis of catecholamine circuitry revealed conservation of gross catecholaminergic neuroanatomy between surface and cave morphs. Taken together, these findings suggest that evolutionarily derived changes in adrenergic signaling underlie the reduced sleep of cave populations.


Assuntos
Evolução Biológica , Characidae/fisiologia , Receptores Adrenérgicos beta/fisiologia , Sono/fisiologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Encéfalo/metabolismo , Cavernas , Contagem de Células/métodos , Contagem de Células/estatística & dados numéricos , Ecossistema , Neurônios/metabolismo , Fenótipo , Propranolol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sono/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo
18.
PLoS Genet ; 5(1): e1000326, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19119422

RESUMO

The evolution of degenerate characteristics remains a poorly understood phenomenon. Only recently has the identification of mutations underlying regressive phenotypes become accessible through the use of genetic analyses. Focusing on the Mexican cave tetra Astyanax mexicanus, we describe, here, an analysis of the brown mutation, which was first described in the literature nearly 40 years ago. This phenotype causes reduced melanin content, decreased melanophore number, and brownish eyes in convergent cave forms of A. mexicanus. Crosses demonstrate non-complementation of the brown phenotype in F(2) individuals derived from two independent cave populations: Pachón and the linked Yerbaniz and Japonés caves, indicating the same locus is responsible for reduced pigmentation in these fish. While the brown mutant phenotype arose prior to the fixation of albinism in Pachón cave individuals, it is unclear whether the brown mutation arose before or after the fixation of albinism in the linked Yerbaniz/Japonés caves. Using a QTL approach combined with sequence and functional analyses, we have discovered that two distinct genetic alterations in the coding sequence of the gene Mc1r cause reduced pigmentation associated with the brown mutant phenotype in these caves. Our analysis identifies a novel role for Mc1r in the evolution of degenerative phenotypes in blind Mexican cavefish. Further, the brown phenotype has arisen independently in geographically separate caves, mediated through different mutations of the same gene. This example of parallelism indicates that certain genes are frequent targets of mutation in the repeated evolution of regressive phenotypes in cave-adapted species.


Assuntos
Evolução Molecular , Peixes/genética , Pigmentação/genética , Receptor Tipo 1 de Melanocortina/genética , Animais , Peixes/metabolismo , Genética Populacional , Genótipo , Desequilíbrio de Ligação , Melaninas/genética , Melaninas/metabolismo , Mutação , Fenótipo , População/genética , Locos de Características Quantitativas , Peixe-Zebra/genética
19.
Sci Rep ; 12(1): 18709, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379982

RESUMO

We investigated the hypothesis that intra ejaculate sperm competition screens against the transmission of deleterious alleles, including new mutants, from male parent to offspring. Recent investigations have established that sperm haploid genotypes can have major effects on sperm traits such as cellular robustness, longevity, and fertilization success. However, there is no evidence that new mutations can meaningfully affect sperm phenotypes. We tested this directly by comparing sperm from mutagenized and non-mutagenized control males in Astyanax fish. We used N-ethyl-N-nitrosourea (ENU) to induce single base substitutions in spermatogonial stem cells. We looked at swimming velocity, an important factor contributing to fertilization success, and flagellar length. Variability in swimming velocity was significantly higher in sperm from mutagenized males than in control sperm, reflecting their increased allelic diversity. In contrast, flagellar length, which is fixed during diploid stages of spermatogenesis, was unaffected by ENU treatment. We briefly discuss the implications of intra-ejaculate screening for maintenance of anisogamy and for outcomes of assisted reproductive technology.


Assuntos
Characidae , Sêmen , Animais , Masculino , Espermatozoides , Characidae/genética , Espermatogênese/genética , Mutagênese , Fertilização
20.
Proc Natl Acad Sci U S A ; 105(51): 20106-11, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19104060

RESUMO

The blind Mexican cave tetra, Astyanax mexicanus, is a unique model system for the study of parallelism and the evolution of cave-adapted traits. Understanding the genetic basis for these traits has recently become feasible thanks to production of a genome-wide linkage map and quantitative trait association analyses. The selection of suitable candidate genes controlling quantitative traits remains challenging, however, in the absence of a physical genome. Here, we describe the integration of multiple linkage maps generated in four separate crosses between surface, cave, and hybrid forms of A. mexicanus. We performed exhaustive BLAST analyses of genomic markers populating this integrated map against sequenced genomes of numerous taxa, ranging from yeast to amniotes. We found the largest number of identified sequences (228), with the most expect (E) values <10(-5) (95), in the zebrafish Danio rerio. The most significant hits were assembled into an "anchored" linkage map with Danio, revealing numerous regions of conserved synteny, many of which are shared across critical regions of identified quantitative trait loci (QTL). Using this anchored map, we predicted the positions of 21 test genes on the integrated linkage map and verified that 18 of these are found in locations homologous to their chromosomal positions in D. rerio. The anchored map allowed the identification of four candidate genes for QTL relating to rib number and eye size. The map we have generated will greatly accelerate the production of viable lists of additional candidate genes involved in the development and evolution of cave-specific traits in A. mexicanus.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Seleção Genética , Tetraodontiformes/genética , Animais , Evolução Biológica , Olho , Locos de Características Quantitativas , Costelas , Sintenia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA