Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16840, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039186

RESUMO

Pesticides and pharmaceuticals enter aquatic ecosystems as complex mixtures. Various processes govern their dissipation and effect on the sediment and surface waters. These micropollutants often show persistence and can adversely affect microorganisms even at low concentrations. We investigated the dissipation and effects on procaryotic communities of metformin (antidiabetic drug), metolachlor (agricultural herbicide), and terbutryn (herbicide in building materials). These contaminants were introduced individually or as a mixture (17.6 µM per micropollutant) into laboratory microcosms mimicking the sediment-water interface. Metformin and metolachlor completely dissipated within 70 days, whereas terbutryn persisted. Dissipation did not differ whether the micropollutants were introduced individually or as part of a mixture. Sequence analysis of 16S rRNA gene amplicons evidenced distinct responses of prokaryotic communities in both sediment and water. Prokaryotic community variations were mainly driven by matrix composition and incubation time. Micropollutant exposure played a secondary but influential role, with pronounced effects of recalcitrant metolachlor and terbutryn within the micropollutant mixture. Antagonistic and synergistic non-additive effects were identified for specific taxa across taxonomic levels in response to the micropollutant mixture. This study underscores the importance of considering the diversity of interactions between micropollutants, prokaryotic communities, and their respective environments when examining sediment-water interfaces affected by multiple contaminants.


Assuntos
Sedimentos Geológicos , RNA Ribossômico 16S , Poluentes Químicos da Água , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , RNA Ribossômico 16S/genética , Herbicidas , Bactérias/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos , Acetamidas , Metformina/farmacologia , Biodegradação Ambiental
2.
Sci Rep ; 12(1): 7245, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508504

RESUMO

Natural attenuation, involving microbial adaptation, helps mitigating the effect of oil contamination of surface soils. We hypothesized that in soils under fluctuating conditions and receiving oil from seeps, aerobic and anaerobic bacteria as well as fungi could coexist to efficiently degrade hydrocarbons and prevent the spread of pollution. Microbial community diversity was studied in soil longitudinal and depth gradients contaminated with petroleum seeps for at least a century. Hydrocarbon contamination was high just next to the petroleum seeps but this level drastically lowered from 2 m distance and beyond. Fungal abundance and alpha-diversity indices were constant along the gradients. Bacterial abundance was constant but alpha-diversity indices were lower next to the oil seeps. Hydrocarbon contamination was the main driver of microbial community assemblage. 281 bacterial OTUs were identified as indicator taxa, tolerant to hydrocarbon, potentially involved in hydrocarbon-degradation or benefiting from the degradation by-products. These taxa belonging to lineages of aerobic and anaerobic bacteria, have specific functional traits indicating the development of a complex community adapted to the biodegradation of petroleum hydrocarbons and to fluctuating conditions. Fungi are less impacted by oil contamination but few taxa should contribute to the metabolic complementary within the microbial consortia forming an efficient barrier against petroleum dissemination.


Assuntos
Petróleo , Poluentes do Solo , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo
3.
MethodsX ; 9: 101880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311268

RESUMO

Compound-specific isotope analysis (CSIA) is a powerful approach to evaluate the transformation of organic pollutants in the environment. However, the application of CSIA to micropollutants, such as pesticides, remains limited because appropriate extraction methods are currently lacking. Such methods should address a wide range of pesticides and environmental matrices, while recovering sufficient mass for reliable CSIA without inducing stable isotope fractionation. Here, we present simple extraction methods for carbon and nitrogen CSIA for different environmental matrices and six commonly used herbicides, i.e., atrazine, terbutryn, acetochlor, alachlor, butachlor, and S-metolachlor, and three fungicides, i.e., dimethomorph, tebuconazole, and metalaxyl. We examined the potential of several extraction methods for four types of soils or sediments, three types of environmental waters and aerial and root plant samples for multielement (ME)-CSIA.•Pesticide extraction recoveries varied depending on the physical characteristics of the pesticides and matrix properties for environmental water (77 to 87%), soil and sediment (35 to 82%), and plant (40 to 59%) extraction.•The tested extraction methods did not significantly affect the carbon and nitrogen stable isotope signatures of pesticides (Δ(13C) <0.9‰ for Δ(15N) <1.0‰).

4.
Microorganisms ; 10(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422372

RESUMO

Metformin is one of the most prescribed antidiabetic agents worldwide and is also considered for other therapeutic applications including cancer and endocrine disorders. It is largely unmetabolized by human enzymes and its presence in the environment has raised concern, with reported toxic effects on aquatic life and potentially also on humans. We report on the isolation and characterisation of strain MD1, an aerobic methylotrophic bacterium growing with metformin as its sole carbon, nitrogen and energy source. Strain MD1 degrades metformin into dimethylamine used for growth, and guanylurea as a side-product. Sequence analysis of its fully assembled genome showed its affiliation to Aminobacter niigataensis. Differential proteomics and transcriptomics, as well as mini-transposon mutagenesis of the strain, point to genes and proteins essential for growth with metformin and potentially associated with hydrolytic C-N cleavage of metformin or with cellular transport of metformin and guanylurea. The obtained results suggest the recent evolution of the growth-supporting capacity of strain MD1 to degrade metformin. Our results identify candidate proteins of the enzymatic system for metformin transformation in strain MD1 and will inform future research on the fate of metformin and its degradation products in the environment and in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA