Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 30(45): e202400219, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38717037

RESUMO

Demonstrated here is an external photo-sensitizer-free (auto-sensitized) singlet oxygen-enabled solvent-dependent tertiary hydroxylation and aryl-alkyl spiro-etherification of C3-maleimidated quinoxalines. Such "reagent-less" photo-oxygenation at Csp3-H and etherification involving Csp3-H/Csp2-H are unparalleled. Possibly, the highly π-conjugated N-H tautomer allows the substrate to get excited by irradiation, and subsequently, it attains the triplet state via ISC. This excited triplet-state sensitized molecule then transfers its energy to a triplet-state oxygen (3O2) generating reactive singlet oxygen (1O2) for hydroxylation and spirocyclization depending on the solvent used. In HFIP, the generated alkoxy radical accepts a proton via HAT giving hydroxylated product. In contrast, in an aprotic PhCl it underwent a radical addition at the ortho-position of the C2 aryl to provide spiro-ether. An unprecedented orthogonal spiro-etherification was observed via the displacement of o-substitutents for ortho (-OEt, -OMe, -F, -Cl, -Br) substituted substrates. The order of ipso substitution follows the trend -OMe>-OEt>-F>-H>-Cl>-Br. Both these oxygenation reactions can be carried out with nearly equal ease using direct sunlight without the requirement of any elaborate reaction setup. Demonstration of large-scale synthesis and a few interesting transformations have also been realized. Furthermore, several insightful control experiments and quantum chemical computations were performed to unravel the mechanism.

2.
Chem Commun (Camb) ; 59(75): 11196-11199, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37650219

RESUMO

A visible light-driven di-functionalization of maleimide with disulfide and in situ-generated singlet oxygen offers selective 1,2-thiohydroxylation under additive-free conditions. Here the disulfide plays the dual role of photosensitizer and the coupling reagent. Notably, the hydroxyl functionality originates from the in situ generated singlet oxygen followed by HAT from H2O (moisture).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA